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MATHEMATICAL MODELLING OF HIGHLY DISORDERED ANISOTROPIC
STRUCTURES.

PART 2.2. ENHANCED EFFECTIVE PERMITTIVITY MODEL TO INVESTIGATE
ANISOTROPIC METAMATERIALS WITH HIGH DEGREE OF OF DISODER.

VLADIMIR MITYUSHEV

Abstract

We develop a new method of complex potentials and constructive results on the R-linear prob-
lem. The proposed method yields approximate and exact analytical formulas for the effective
properties of dispersed composites with the strictly derived precision of their validity in concen-
tration 𝑓 and the contrast parameter 𝜚 for two-phase composites. First, we developed formulas
for real-valued permittivity. Next, we explore complex values of the normalized permittivity of
components 𝜀𝑘 for multi-phase composites. Consequently, the contrast parameters 𝜚𝑘 also be-
come complex. Building upon the foundations laid out in this chapter, we extend these formulas
to the complex domain through analytic continuation in terms of 𝜚𝑘 . To ensure the validity of
this continuation, it is imperative that we establish a groundwork for understanding the interplay
between complex permittivity and its matrix representation.

1. Implementation of Schwarz’s method

1.1. Explicit and implicit iterative schemes. The method of successive approximations can
be applied to equations of Schwarz’s method by means of two different iterative schemes. The
explicit iteration scheme has the form

(1) 𝜑
(0)
𝑘

(𝑧) = 𝑧,

(2) 𝜑
(𝑝)
𝑘

(𝑧) = ∑𝑁
𝑚=1

𝜚𝑚
2𝜋𝑖

∫
𝐿𝑚

𝜑
(𝑝−1)
𝑚 (𝑡)𝐸1(𝑡 − 𝑧) d𝑡 + 𝑧, 𝑧 ∈ 𝐺𝑘 , (𝑝 = 1,2, . . .).
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The implicit iteration scheme to equations of Schwarz’s method [12] with the same zero
approximation (1) has the form

(3)
𝜑
(𝑝)
𝑘

(𝑧) − 𝜚𝑘
2𝜋𝑖

∫
𝐿𝑘
𝜑
(𝑝)
𝑘

(𝑡)𝐸1(𝑡 − 𝑧)d𝑡 =

∑
𝑚≠𝑘

𝜚𝑚
2𝜋𝑖

∫
𝐿𝑚

𝜑
(𝑝−1)
𝑚 (𝑡)𝐸1(𝑡 − 𝑧)d𝑡 + 𝑧, 𝑧 ∈ 𝐺𝑘 , (𝑝 = 1,2, . . .).

The implicit scheme corresponds to equation of Schwarz’s method.
In order to reduce computations, equations (1)-(3) are written without additive constants 𝑐𝑘 .

First, it is related to the observation that we need the derivative 𝜑′
𝑘
(𝑧) to compute the effective

constants. Second, an additive constant 𝐶 in the approximation 𝜑
(𝑝−1)
𝑘

(𝑧) yields an additive
constant in the next approximation 𝜑

(𝑝)
𝑘

(𝑧). This fact is established by the residue theorem

(4)
1

2𝜋𝑖

∫
𝐿𝑚

𝐶𝐸1(𝑡 − 𝑧) d𝑡 = 𝛿𝑚𝑘𝐶, 𝑧 ∈ 𝐺𝑘 ,

where 𝛿𝑚𝑘 stands for the Kronecker delta. Application of (1)-(3) leads to a power series in 𝜚𝑘 .
This is the reason why the method is also called contrast expansion [9, 22, 5].

Let ℎ0 be given and ℎ unknown functions from the space H(𝐺𝑘 ) for a fixed 𝑘 . The following
integral equation has to be solved in every iteration step of (3)

(5) ℎ(𝑧) − 𝜚𝑘

2𝜋𝑖

∫
𝐿𝑘

ℎ(𝑡)𝐸1(𝑡 − 𝑧)d𝑡 = ℎ0(𝑧), 𝑧 ∈ 𝐺𝑘 .

Introduce the compact integral operators in the space H(𝐺𝑘 )

(6) (𝑃𝑘ℎ) (𝑧) =
1

2𝜋𝑖

∫
𝐿𝑘

ℎ(𝑡)𝐸0(𝑡 − 𝑧)d𝑡 𝑧 ∈ 𝐺𝑘 ,

where the function 𝐸0(𝑧) analytic in the periodicity cell 𝑄 is determined by its Taylor series

(7) 𝐸0(𝑧) = 𝐸1(𝑧) −
1
𝑧
=

∞∑︁
𝑘=1

𝑆2𝑘 𝑧
2𝑘−1.

Write equation (5) in the operator form

(8) ℎ− 𝜚𝑘 (Sℎ+𝑃𝑘ℎ) = ℎ0,

where

(9) Sℎ(𝑧) =


1

2𝜋𝑖

∫
𝐿𝑘

ℎ(𝑡)
𝑡−𝑧 d𝑡, 𝑧 ∈ 𝐺𝑘 ,

1
2ℎ(𝑧) +

1
2𝜋𝑖

∫
𝐿𝑘

ℎ(𝑡)
𝑡−𝑧 d𝑡, 𝑧 ∈ 𝐿𝑘 .
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Here, the boundary values of Sℎ(𝑧) on 𝐿𝑘 are written in accordance with Sochocki’s formulas

(10) lim
𝜁→𝑧
𝜁∈𝐺𝑘

1
2𝜋𝑖

∫
𝐿𝑘

ℎ(𝑡)
𝑡 − 𝜁

d𝑡 =
1
2
ℎ(𝑧) + 1

2𝜋𝑖

∫
𝐿𝑘

ℎ(𝑡)
𝑡 − 𝑧

d𝑡, 𝑧 ∈ 𝐿𝑘 .

Consider the integral equation similar to (8)

(11) ℎ− 𝜚𝑘Sℎ = ℎ0.

The singular operator S is bounded in the space H(𝐿𝑘 ) of Hölder continuous functions
on the curve 𝐿𝑘 [23]. The space H(𝐺𝑘 ) of functions analytically continued from 𝐿𝑘 into 𝐺𝑘

can be considered as a closed subspace of H(𝐿𝑘 ). The following two theorems justify the
approximation schemes developed in the next sections

Theorem 1 ([17]). The operators S and S+𝑃𝑘 are bounded in H(𝐺𝑘 ).

Theorem 2 ([3]). Equation (11) has the unique solution, which can be written by the inverse
operator correctly defined and bounded in H(𝐺𝑘 ) for |𝜚𝑘 | < 1

(12) ℎ = (𝐼 − 𝜚𝑘S)−1ℎ0 = ℎ0 + 𝜚𝑘Sℎ0 + 𝜚2
𝑘S

2ℎ0 + . . . .

An analogous assertion takes place for equation (5) [5].
The both methods (2) and (3) converge absolutely for any fixed |𝜚𝑘 | < 1 [15, 16]. In the case

|𝜚𝑘 | = 1, the uniform convergence can be established by means of the regularization.
Equations (2) can be written in the form

(13)
𝜑
(𝑝)
𝑘

(𝑧) = ∑𝑁
𝑚=1

𝜚𝑚
2𝜋𝑖

∫
𝐿𝑚

𝜑
(𝑝−1)
𝑚 (𝑡) d𝑡

𝑡−𝑧 +
∑𝑁

𝑚=1 𝜚𝑚

(
𝑃𝑚𝜑

(𝑝−1)
𝑚

)
(𝑧) + 𝑧,

𝑧 ∈ 𝐺𝑘 , (𝑝 = 1,2, . . .).

Equations (3) can be modified by splitting the integral term with 𝑝th iteration onto two terms
with 𝑝th and (𝑝−1)th iterations as follows

(14)

𝜑
(𝑝)
𝑘

(𝑧) − 𝜚𝑘
2𝜋𝑖

∫
𝐿𝑘
𝜑
(𝑝)
𝑘

(𝑡) d𝑡
𝑡−𝑧 = 𝜚𝑘

(
𝑃𝑘𝜑

(𝑝−1)
𝑘

)
(𝑧)

+∑
𝑚≠𝑘

𝜚𝑚
2𝜋𝑖

∫
𝐿𝑚

𝜑
(𝑝−1)
𝑚 (𝑡)𝐸1(𝑡 − 𝑧)d𝑡 + 𝑧, 𝑧 ∈ 𝐺𝑘 , (𝑝 = 1,2, . . .).

The iterative scheme (14) can be treated as a mixed scheme when the self-induced charge of
𝑘th inclusions is partly included in the 𝑝th approximation and partly in the previous (𝑝 −1)th
approximation.

Thus, Schwarz’s method can be implemented by means of explicit and implicit iterative
schemes with different modifications. The scheme (2) corresponds to the contrast expansion,
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(3) to the expansion in the concentration of inclusions called cluster expansion in [22]. These
two principal schemes with modifications like (14) have a lot of other names usually related to
self-consistent methods. One can meet manipulations with the distorted balance of precision as
in the difference scheme and Mori-Tanaka method.

For example, consider the approximation of (14) neglecting the terms with 𝑃𝑘 for a two-phase
composites (𝜚𝑘 = 𝜚)

(15)
𝜑
(𝑝)
𝑘

(𝑧) − 𝜚 1
2𝜋𝑖

∫
𝐿𝑘
𝜑
(𝑝)
𝑘

(𝑡) d𝑡
𝑡−𝑧 ≈

𝜚
∑

𝑚≠𝑘
1

2𝜋𝑖

∫
𝐿𝑚

𝜑
(𝑝−1)
𝑚 (𝑡)𝐸1(𝑡 − 𝑧)d𝑡 + 𝑧, 𝑧 ∈ 𝐺𝑘 , (𝑝 = 1,2, . . .).

Such an approximation can be accompanied by engineering arguments about the balance of
flux produced by one inclusion and the flux by all the others. This is true up to 𝑂 (𝜚2). Let the
problem is solved in the first iteration. It can be solved analytically or numerically, it doesn’t
matter. But the problem is solved up to 𝑂 (𝜚2). Now, let the second iteration is applied. The
obtained second-order solution contains the term 𝜚2 analytically or numerically. The higher-
order terms of 𝑓 accompanying 𝜚2 can arise. And so forth. After a few iterations, one arrives at
a formula or numerical data with a redundant tail of high-order terms in 𝜚 and 𝑓 .

Equations (15) can be ”improved” by the approximation of integral operator

𝜚

(
𝑃𝑘𝜑

(𝑝−1)
𝑘

)
(𝑧) ≈ 𝜚𝐶𝑘 for some constants 𝐶𝑘 . Such a type of approximation was proposed

for elastic composites in [20]. It was based on the integral approximation, hence, was of order
𝑂 ( 𝑓 ). This approximation was used in [7] for a square array of circular inclusions. Though the
applied method gave the proper result of order 𝑂 ( 𝑓 ), formulas for the effective constants were
written with the tails up to 𝑂 ( 𝑓 4).

Other schemes based on various mathematical manipulations, such as Brugemann’s differ-
ential scheme, can be considered as a separate method. However, if one examines the result
within the obtained precision, it becomes clear that the result coincides with the dilute Clausius-
Mossotti (Maxwell) approximation written in another asymptotic form. This question will be
discussed below.

1.2. Contrast expansion (explicit scheme). In the present section, we pay attention to the
explicit iteration scheme One can see that every iteration (2) increases the contrast parameters
precision by the multiplier of order 𝑂 ( |𝜚 |). The parameter 𝜚 is used with the modulus in order
to avoid confusion in other places when 𝜚 = 𝜚𝑘 for a two-phase composite. The integration
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operator increases the precision by 𝑂 ( 𝑓 ), since

(16) 𝐹 ↦→ |𝐺𝑘 |
(

1
|𝐺𝑘 |

∫
𝐺𝑘

𝐹d𝑥1d𝑥2

)
,

where the operator in the parentheses is bounded in H(𝐺𝑘 ). The multiplier |𝐺𝑘 | is of order 𝑓 .
Therefore,

(17)
𝑑𝜑𝑘

𝑑𝑧
(𝑧) =

𝑑𝜑
(𝑝)
𝑘

𝑑𝑧
(𝑧) +𝑂 ( |𝜚 |𝑝+1 𝑓 𝑝), 𝑧 ∈ 𝐺𝑘 ∪ 𝐿𝑘 .

Integrating this relation we estimate the integral

(18)
∫
𝐺𝑘

𝑑𝜑𝑘

𝑑𝑧
(𝑧) d𝑥1d𝑥2 =

∫
𝐺𝑘

𝑑𝜑
(𝑝)
𝑘

𝑑𝑧
(𝑧) d𝑥1d𝑥2 +𝑂 ( |𝜚 𝑓 |𝑝+1).

This integral will be applied to determine the effective constants. The multiplier 𝜚𝑚 in (2)
guarantees the required precision in 𝜚. We will use the expansion of the kernel 𝐸1(𝑡− 𝑧) in terms
of order 𝑓 1/2 that requires a more careful study of precision in concentration. Hereafter in this
section, the clear behavior of precision in 𝜚 at every step is omitted for shortness.

We now proceed to develop a symbolic algorithm for the effective constants for a given 𝑝. It
follows from (2) that the functions 𝜑(𝑞)

𝑘
(𝑧) for 𝑞 = 𝑝−1 have to be determined up to 𝑂 ( 𝑓 𝑞+1/2).

The kernel 𝐸1(𝑡 − 𝑧) in the integral from (2) for 𝜑
(𝑞)
𝑘

(𝑧) has to be estimated with the same
precision.

Introduce the integral frequently met in the theory of analytic functions [23]

(19) 𝐽𝑘 (𝑧) =
1

2𝜋𝑖

∫
𝐿𝑘

𝑡

𝑡 − 𝑧
d𝑡, 𝑧 ∈ 𝐺𝑘 .

This function is analytic in 𝐺𝑘 and Hölder continuous in 𝐺𝑘 ∪𝐿𝑘 [19, 23]. It is worth noting that
the limit values of 𝐽𝑘 (𝑧) as 𝑧 → 𝐿𝑘 after the application of Sochocki’s formula can be written
by means of the singular integral

(20) 𝐽𝑘 (𝜏) =
𝜏

2
+ 1

2𝜋𝑖

∫
𝐿𝑘

𝑡

𝑡 − 𝜏
d𝑡, 𝜏 ∈ 𝐿𝑘 .

The iterations (13) include the integral

(21) 𝐼
(𝑞)
𝑚𝑘

(𝑧) = 1
2𝜋𝑖

∫
𝐿𝑚

𝜑
(𝑞)
𝑚 (𝑡) 𝐸1(𝑡 − 𝑧) d𝑡.

It follows from 𝜑
(0)
𝑚 (𝑡) = 𝑡 and (7) that the singular part of the integral 𝐼 (0)

𝑘𝑘
(𝑧) coincides with

𝐽𝑘 (𝑧). The integral (21) will be estimated below in two cases.
i) First, it is assumed that 𝑚 ≠ 𝑘 . Consider the simple expression

(22) 𝑡 − 𝑧 = (𝑡 − 𝑎𝑚) + (𝑎𝑚 − 𝑎𝑘 ) − (𝑧− 𝑎𝑘 ),
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where |𝑎𝑚 − 𝑎𝑘 | is the dominating term in comparison with |𝑡 − 𝑎𝑚 | and |𝑧 − 𝑎𝑘 |. The value
|𝑡 − 𝑎𝑚 + 𝑎𝑘 − 𝑧 | is of order 𝑂 (𝑟) = 𝑂 ( 𝑓 1/2). The Taylor approximation of 𝐸1(𝑡 − 𝑧) holds near
𝑎𝑚 − 𝑎𝑘

(23) 𝐸1(𝑡 − 𝑧) =
2𝑞+1∑︁
𝑛=0

(−1)𝑛𝐸𝑛+1(𝑎𝑚 − 𝑎𝑘 ) (𝑡 − 𝑎𝑚 + 𝑎𝑘 − 𝑧)𝑛+𝑂 ( 𝑓 𝑞+1).

Using (23) we estimate the integral (21)

(24) 𝐼
(𝑞)
𝑚𝑘

(𝑧) =
2𝑞+1∑︁
𝑛=0

(−1)𝑛𝐸𝑛+1(𝑎𝑚 − 𝑎𝑘 )
1

2𝜋𝑖

∫
𝐿𝑚

𝜑
(𝑞)
𝑚 (𝑡) (𝑡 − 𝑎𝑚 + 𝑎𝑘 − 𝑧)𝑛d𝑡 +𝑂 ( 𝑓 𝑞+1).

ii) Consider now the case 𝑚 = 𝑘 . Using (7) we approximate 𝐸1(𝑡 − 𝑧) in 𝐺𝑘 by expression

(25) 𝐸1(𝑡 − 𝑧) = 1
𝑡 − 𝑧

−
𝑞+1∑︁
𝑛=1

𝑆2𝑛 (𝑡 − 𝑧)2𝑛−1 +𝑂 ( 𝑓 𝑞+1).

Substitution of (25) into (21) yields

(26) 𝐼
(𝑞)
𝑘𝑘

(𝑧) = 1
2𝜋𝑖

∫
𝐿𝑘

𝜑
(𝑞)
𝑘

(𝑡) d𝑡
𝑡 − 𝑧

−
𝑞+1∑︁
𝑛=1

𝑆2𝑛
2𝜋𝑖

∫
𝐿𝑘

𝜑
(𝑞)
𝑘

(𝑡) (𝑡 − 𝑧)2𝑛−1d𝑡 +𝑂 ( 𝑓 𝑞+1).

The asymptotic formulas (24) and (26) yield the estimation for

(27) 𝜑
(𝑞)
𝑘

(𝑧) = 𝑧+
𝑁∑︁

𝑚=1
𝜚𝑚 𝐼

(𝑞−1)
𝑚𝑘

(𝑧).

1.3. Second iteration in contrast expansion. The general method described above can be
implemented in symbolic form and simplified within a fixed precision. We illustrate the general
scheme for 𝑝 = 2. Even such a low-order approximation yields a new analytical approximation
for the effective permittivity tensor. We will use the following approximation

(28)
𝜀11 = 1+2Re

∑𝑁
𝑘=1 𝜚𝑘

∫
𝐺𝑘

𝑑
𝑑𝑧
𝜑
(2)
𝑘

(𝜉1 + 𝑖𝜉2) d𝜉1d𝜉2 +𝑂 ( |𝜚 |3 𝑓 7/2),

𝜀12 = −2Im
∑𝑁

𝑘=1 𝜚𝑘
∫
𝐺𝑘

𝑑
𝑑𝑧
𝜑
(2)
𝑘

(𝜉1 + 𝑖𝜉2) d𝜉1d𝜉2 +𝑂 ( |𝜚 |3 𝑓 7/2).

It will be seen below that it is sufficient to take the approximation 𝑑
𝑑𝑧
𝜑
(2)
𝑘

up to 𝑂 ( |𝜚 |2 𝑓 5/2) in
order to reach the specified in (28) precision.

First, investigate the precision in 𝜚. The idea can be easily represented for a two-phase
composite when the constant 𝜚 = 𝜚𝑘 for all 𝑘 = 1,2, . . . , 𝑁 . The iterative scheme (2) yields
𝜑
(0)
𝑘

= 𝛼0 and 𝜑
(1)
𝑘

= 𝛼1𝜚 + 𝛽1, where the terms 𝛼0, 𝛼1, 𝛽1 are constants in 𝜚. The second
iteration can be schematically written as 𝜑

(2)
𝑘

= 𝜚(𝛼1𝜚+ 𝛽1) +𝛼0. After substitution into (28),
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one can see that one may neglect the coefficient 𝛼1. Therefore, it is sufficient to determine 𝜑
(1)
𝑘

up to 𝑂 (1), as 𝜚 → 0,

(29) 𝜑
(1)
𝑘

(𝑧) =
𝑁∑︁

𝑚=1

𝜚𝑚

2𝜋𝑖

∫
𝐿𝑚

𝑡 𝐸1(𝑡 − 𝑧) d𝑡 + 𝑧 = 𝑧+𝑂 (1), 𝑧 ∈ 𝐺𝑘 .

For completeness, we have to note that the following singular integral is a bounded function in
𝐺𝑘 ∪ 𝐿𝑘

(30)
1

2𝜋𝑖

∫
𝐿𝑘

𝑡 𝐸1(𝑡 − 𝑧) d𝑡 = 𝐽𝑘 (𝑧) −
1

2𝜋𝑖

∫
𝐿𝑘

𝑡 𝐸0(𝑡 − 𝑧) d𝑡.

Here, equations (7) and (19) are used. The second approximation has the form

(31) 𝜑
(2)
𝑘

(𝑧) =
𝑁∑︁

𝑚=1

𝜚𝑚

2𝜋𝑖

∫
𝐿𝑚

𝑡 𝐸1(𝑡 − 𝑧) d𝑡 + 𝑧+𝑂 ( |𝜚 |2), 𝑧 ∈ 𝐺𝑘 .

Below, we omit the precision in 𝜚 for shortness and keep track of the precision in 𝑓 . Differ-
entiate equation (31)

(32)
𝑑

𝑑𝑧
𝜑
(2)
𝑘

(𝑧) = 1+ 1
𝜋

𝑁∑︁
𝑚=1

𝜚𝑚
𝑑

𝑑𝑧
𝑔𝑚 (𝑧),

where the analytic in 𝐺𝑚 function is introduced

(33) 𝑔𝑚 (𝑧) =
1
2𝑖

∫
𝐿𝑚

𝑡𝐸1(𝑡 − 𝑧)d𝑡, 𝑧 ∈ 𝐺𝑘 .

The complex Green formulas hold for a function 𝑤(𝑧, 𝑧) continuously differentiable in a
smooth closed domain 𝐺 [23]

(34)
∫
𝐺

𝜕𝑤

𝜕𝑧
d𝜉1d𝜉2 =

1
2𝑖

∫
𝜕𝐺

𝑤 d𝑡,
∫
𝐺

𝜕𝑤

𝜕𝑧
d𝜉1d𝜉2 = − 1

2𝑖

∫
𝜕𝐺

𝑤 d𝑡.

Introduce the averaged contrast parameter over inclusions

(35) ⟨𝜚⟩ =
𝑁∑︁
𝑘=1

𝜚𝑘 |𝐺𝑘 |.

Using (32) and (28) we obtain

(36)
𝜀11 = 1+2⟨𝜚⟩ +Re 2

𝜋

∑𝑁
𝑘=1

∑𝑁
𝑚=1 𝜚𝑘 𝜚𝑚ℎ𝑘𝑚 +𝑂 ( |𝜚 |3 𝑓 7/2),

𝜀12 = −Im 2
𝜋

∑𝑁
𝑘=1

∑𝑁
𝑚=1 𝜚𝑘 𝜚𝑚ℎ𝑘𝑚 +𝑂 ( |𝜚 |3 𝑓 7/2).

where

(37) ℎ𝑘𝑚 =

∫
𝐺𝑘

𝑑𝑔𝑚

𝑑𝑧
(𝑧) d𝜉1d𝜉2 = − 1

2𝑖

∫
𝐿𝑘

𝑡 𝑔𝑚 (𝑡) d𝑡

by the second Green formula (34).
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i) Consider the integral (33) when 𝑚 ≠ 𝑘 . Introduce for shortness the designations 𝐸𝑝,𝑚𝑘 =

𝐸𝑝 (𝑎𝑚−𝑎𝑘 ) and𝑇 = 𝑡−𝑎𝑚, 𝑍 = 𝑧−𝑎𝑘 . We represent the function 𝐸1(𝑡− 𝑧) by the Taylor formula

(38)
𝐸1(𝑡 − 𝑧) = 𝐸1,𝑚𝑘 −𝐸2,𝑚𝑘 (𝑇 − 𝑍) +𝐸3,𝑚𝑘 (𝑇 − 𝑍)2 −𝐸4,𝑚𝑘 (𝑇 − 𝑍)3

+𝐸5,𝑚𝑘 (𝑇 − 𝑍)4 +𝑂 ( 𝑓 5/2).

Substitute (38) into (33)

(39) 𝑔𝑚 (𝑧) =
1
2𝑖

∫
𝐿𝑚

𝑡 [ 𝑓1(𝑧) + 𝑓2(𝑧, 𝑡)] d𝑡 +𝑂 ( 𝑓 5/2),

where the following designations are introduced

(40)

𝑓1(𝑧) = 𝐸1,𝑚𝑘 +𝐸2,𝑚𝑘𝑍 +𝐸3,𝑚𝑘𝑍
2 +𝐸4,𝑚𝑘𝑍

3 +𝐸5,𝑚𝑘𝑍
4,

𝑓2(𝑧, 𝑡) = −(𝐸2,𝑚𝑘 +2𝑍𝐸3,𝑚𝑘 +3𝑍2𝐸4,𝑚𝑘 +4𝐸5,𝑚𝑘𝑍
3)𝑇

+(𝐸3,𝑚𝑘 +3𝐸4,𝑚𝑘𝑍 +6𝐸5,𝑚𝑘𝑍
2)𝑇2 − (𝐸4,𝑚𝑘 +4𝐸5,𝑚𝑘𝑍)𝑇3 +𝐸5,𝑚𝑘𝑇

4.

Remark 1. The result (40) and others below are obtained due to symbolic computations with the
package Mathematica®. The corresponding symbolic computations can increase the precision
[4, Chapter 2].

Using the first Green formula (34) introduce the static complex moments of the domain 𝐺𝑚

(41)
𝑠𝑞𝑚 = 1

2𝑖

∫
𝐿𝑚

𝑡 (𝑡 − 𝑎𝑚)𝑞d𝑡 =
∫
𝐺𝑚

(𝑡 − 𝑎𝑚)𝑞d𝑥1d𝑥2 =

1
2𝑖

∫
𝐿𝑚

(𝑡 − 𝑎𝑚) (𝑡 − 𝑎𝑚)𝑞d𝑡 (𝑞 = 0,1, . . .)

and calculate

(42) 𝑠0𝑚 =
1
2𝑖

∫
𝐿𝑚

𝑡 d𝑡 =
∫
𝐺𝑚

d𝑥1d𝑥2 = |𝐺𝑚 |.

The dimensionless complex static moments can be introduced as follows

(43) 𝑠
(0)
𝑞𝑚 = 𝑠𝑞𝑚𝑠

− 𝑞

2 −1
0𝑚 .

In particular, (43) yields 𝑠(0)0𝑚 = 1. It follows from (41) and (43) that

(44) 𝑠𝑞𝑚 =𝑂 ( 𝑓
𝑞

2 +1), 𝑠
(0)
𝑞𝑚 =𝑂 (1).

Continue to use the designations

(45) 𝐸𝑝,𝑚𝑘 = 𝐸𝑝 (𝑎𝑚 − 𝑎𝑘 ), 𝑝 = 2,3, . . . ; 𝑚, 𝑘 = 1,2, . . . , 𝑁,
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including the case 𝑚 = 𝑘 . Here, it is assumed for shortness that 𝐸𝑝 (𝑎𝑚 − 𝑎𝑘 ) = 𝑆𝑝 when 𝑎𝑚

coincides with 𝑎𝑘 . The lattice sums 𝑆𝑝 are introduced in [11]. Then, equation (39) can be written
in the form

(46)
𝑔𝑚 (𝑧) = 𝑓1(𝑧)𝑠0𝑚 − (𝐸2,𝑚𝑘 +2𝑍𝐸3,𝑚𝑘 +3𝑍2𝐸4,𝑚𝑘 +4𝑍3𝐸5,𝑚𝑘 )𝑠1𝑚

+(𝐸3,𝑚𝑘 +3𝐸4,𝑚𝑘𝑍 +6𝐸5,𝑚𝑘𝑍
2)𝑠2𝑚

−(𝐸4,𝑚𝑘 +4𝐸5,𝑚𝑘𝑍)𝑠3𝑚 +𝐸5,𝑚𝑘 𝑠4𝑚 +𝑂 ( 𝑓 7/2),

where the estimation (44) is used and 𝑍 = 𝑧− 𝑎𝑘 . Calculate

(47)

𝑑𝑔𝑚
𝑑𝑧

(𝑧) = (𝐸2,𝑚𝑘 +2𝐸3,𝑚𝑘𝑍 +3𝐸4,𝑚𝑘𝑍
2 +4𝐸5,𝑚𝑘𝑍

3)𝑠0𝑚

−2(𝐸3,𝑚𝑘 +3𝑍𝐸4,𝑚𝑘 +6𝑍2𝐸5,𝑚𝑘 )𝑠1𝑚 +3(𝐸4,𝑚𝑘 +4𝐸5,𝑚𝑘𝑍)𝑠2𝑚

−4𝐸5,𝑚𝑘 𝑠3𝑚 +𝑂 ( 𝑓 3).

The differentiation operator decreases the precision on 𝑓 1/2, since |𝑧−𝑎𝑘 | =𝑂 ( 𝑓 1/2). Using the
first Green formula (34), calculate the integral (37) with 𝑑𝑔𝑚

𝑑𝑧
(𝑧) given by the approximation (47)

(48)
ℎ𝑘𝑚 = (𝐸2,𝑚𝑘 𝑠0𝑘 +2𝐸3,𝑚𝑘 𝑠1𝑘 +3𝐸4,𝑚𝑘 𝑠2𝑘 +4𝐸5,𝑚𝑘 𝑠3𝑘 )𝑠0𝑚

−2(𝐸3,𝑚𝑘 𝑠0𝑘 +3𝐸4,𝑚𝑘 𝑠1𝑘 +6𝐸5,𝑚𝑘 𝑠2𝑘 )𝑠1𝑚

+3(𝐸4,𝑚𝑘 𝑠0𝑘 +4𝐸5,𝑚𝑘 𝑠1𝑘 )𝑠2𝑚 −4𝐸5,𝑚𝑘 𝑠0𝑘 𝑠3𝑚 +𝑂 ( 𝑓 4).

Write (48) in the form

(49)
ℎ𝑘𝑚 = 𝐸2,𝑚𝑘 𝑠0𝑘 𝑠0𝑚 +2𝐸3,𝑚𝑘 (𝑠1𝑘 𝑠0𝑚 − 𝑠1𝑚𝑠0𝑘 )
+3𝐸4,𝑚𝑘 (𝑠2𝑘 𝑠0𝑚 + 𝑠2𝑚𝑠0𝑘 −2𝑠1𝑚𝑠1𝑘 )
+4𝐸5,𝑚𝑘 [𝑠3𝑘 𝑠0𝑚 − 𝑠0𝑘 𝑠3𝑚 +3(𝑠1𝑘 𝑠2𝑚 − 𝑠2𝑘 𝑠1𝑚)] +𝑂 ( 𝑓 4).

ii) Consider the integral (33) when 𝑚 = 𝑘 . It is equal to the integral (30)

(50) 𝑔𝑘 (𝑧) = 𝐽𝑘 (𝑧) −
1
2𝑖

∫
𝐿𝑘

𝑡 𝐸0(𝑡 − 𝑧) d𝑡.

We find for the considered periodic square unit cell

(51) 𝐸′
0(𝑡 − 𝑧) = 𝜋+3𝑆4(𝑡 − 𝑧)2 +7𝑆8(𝑡 − 𝑧)6 +𝑂 ( 𝑓 7/2).

Substitute (51) into (50) and use the first formula (34)

(52) 𝑔′𝑘 (𝑧) = 𝐽′𝑘 (𝑧) + 𝜋𝑠0𝑘 +3𝑆4

∫
𝐺𝑘

(𝑡 − 𝑧)2 d𝜉1d𝜉2 +𝑂 ( 𝑓 5/2).

The term (𝑡 − 𝑧)6 will be neglected due to the considered precision.
Calculate the integral from (52)

(53)
∫
𝐺𝑘

[𝑡 − 𝑎𝑘 − (𝑧− 𝑎𝑘 )]2 d𝜉1d𝜉2 = 𝑠2𝑘 −2𝑠1𝑘 (𝑧− 𝑎𝑘 ) + 𝑠0𝑘 (𝑧− 𝑎𝑘 )2.
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Then, ℎ𝑘𝑘 defined by (37) can be calculated by the asymptotic formula

(54) ℎ𝑘𝑘 =

∫
𝐺𝑘

𝐽′𝑘 (𝑧) d𝜉1d𝜉2 + 𝜋𝑠2
0𝑘 +6𝑆4(𝑠2𝑘 𝑠0𝑘 − 𝑠2

1𝑘 ) +𝑂 ( 𝑓 4).

Therefore, the values ℎ𝑘𝑚 can be found by (48) and (54).
Introduce the value

(55) J =

𝑁∑︁
𝑘=1

𝜚2
𝑘

∫
𝐺𝑘

𝐽′𝑘 (𝑧) d𝜉1d𝜉2 = − 1
2i

𝑁∑︁
𝑘=1

𝜚2
𝑘

∫
𝐿𝑘

𝐽𝑘 (𝑡) d𝑡.

Applying Sochocki’s formulas to 𝐽𝑘 (𝑧) defined by (19) and substituting the result into (55) we
obtain

(56) J =
1

4𝜋

𝑁∑︁
𝑘=1

𝜚2
𝑘

∫
𝐿𝑘

d𝑡
∫
𝐿𝑘

𝜏

𝜏− 𝑡
d𝜏.

We now proceed to calculate the double sum 1
𝜋

∑𝑁
𝑘=1

∑𝑁
𝑚=1 𝜚𝑘 𝜚𝑚ℎ𝑘𝑚 using the asymptotic

formulas (49) and (54). It is convenient to split this sum into the following ones. Introduce the
double sums

(57) L =
1
𝜋

𝑁∑︁
𝑘,𝑚=1

𝜚𝑘 𝜚𝑚 |𝐺𝑘 | |𝐺𝑚 |𝐸2,𝑚𝑘

and

(58) V(1) = 2
𝜋

𝑁∑︁
𝑘,𝑚=1

𝜚𝑘 𝜚𝑚 |𝐺𝑘 | |𝐺𝑚 |𝐸3,𝑚𝑘 (𝑠(0)1𝑘 |𝐺𝑘 |
1
2 − 𝑠

(0)
1𝑚 |𝐺𝑚 |

1
2 )

using the designation (45) and the normalized static moments (43). Analogously introduce

(59)
V(2) = 3

𝜋

∑𝑁
𝑘,𝑚=1 𝜚𝑘 𝜚𝑚 |𝐺𝑘 | |𝐺𝑚 |𝐸4,𝑚𝑘×(

|𝐺𝑘 |𝑠(0)2𝑘 + |𝐺𝑚 |𝑠(0)2𝑚 −2 ( |𝐺𝑘 | |𝐺𝑚 |)
1
2 𝑠

(0)
1𝑚 𝑠

(0)
1𝑘

)
and

(60)
V(3) = 4

𝜋

∑𝑁
𝑘,𝑚=1 𝜚𝑘 𝜚𝑚 |𝐺𝑘 | |𝐺𝑚 |𝐸5,𝑚𝑘×[

|𝐺𝑘 |
3
2 𝑠

(0)
3𝑘 − |𝐺𝑚 |

3
2 𝑠

(0)
3𝑚 +3

(
|𝐺𝑘 |

1
2 |𝐺𝑚 |𝑠(0)1𝑘 𝑠

(0)
2𝑚 − |𝐺𝑚 |

1
2 |𝐺𝑘 |𝑠(0)2𝑘 𝑠

(0)
1𝑚

)]
.

Put

(61) V =V(1) +V(2) +V(3).

Then, equation (36) can be written in the form

(62)
𝜀11 = 1+2⟨𝜚⟩ +2Re (J +L+V) +𝑂 ( |𝜚 |3 𝑓 4),

𝜀12 = −2Im (J +L+V) +𝑂 ( |𝜚 |3 𝑓 4).
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We again write formulas with the explicitly shown precision in 𝜚. The asymptotic formula (62)
is a result of the second iteration in the contrast expansion. The value |𝐺𝑘 | can be considered as
the volume fraction of the component having the contrast parameter 𝜚𝑘 .

Recall that the periodicity cell 𝑄 has the unit area, which means normalizing the centers 𝑎𝑘
and using the scaled to the unit periodicity cell for the Eisenstein functions. Hence, the terms
L, V1, V2 and V3 are of orders 𝑂 ( 𝑓 2), 𝑂 ( 𝑓 5/2), 𝑂 ( 𝑓 3) and 𝑂 ( 𝑓 7/2), respectively. The term J
from (55) has the order 𝑂 ( 𝑓 ) except at some shapes when it is equal to zero. Therefore, one can
introduce the dimensionless cumulative factors

(63) J0 = 𝑓 −1J , L0 = 𝑓 −2L, V0 𝑗 = 𝑓 −
𝑗+4
2 V𝑗 .

Then, (62) can be written up to 𝑂 ( |𝜚 |3 𝑓 4) in the form

(64)
𝜀11 = 1+2⟨𝜚⟩ +2Re

[
𝑓J0 + 𝑓 2L0 + 𝑓 5/2

(
V01 + 𝑓 1/2V02 + 𝑓V03

)]
,

𝜀12 = −2Im
[
𝑓J0 + 𝑓 2L0 + 𝑓 5/2

(
𝑉01 + 𝑓 1/2V02 + 𝑓V03

)]
.

In the case of circular inclusions 𝐽𝑘 (𝑧) = 0, see [5], and all the static moments 𝑠𝑞𝑚 vanishes
for 𝑞 ≥ 1. Hence, the terms J and V vanish.

In order to calculate the components 𝜀22 and 𝜀21 = 𝜀12 one can rotate the structure about the
angle 𝜋

2 and apply the same method. Let the inclusion 𝐺𝑘 be transformed into 𝐺∗
𝑘

after this
rotation. Then, (62) yields

(65)
𝜀22 = 1+2⟨𝜚⟩ +2Re (J ∗+L∗+V∗) +𝑂 ( |𝜚 |3 𝑓 4),

𝜀21 = 𝜀12 = 2Im (J ∗+L∗+V∗) +𝑂 ( |𝜚 |3 𝑓 4),

where the values with the asterisk correspond to the values from (62). The expressions for 𝜀12

in (64) and 𝜀21 in (65) have the opposite signs since after the rotation, the coordinate system
𝑥1𝑂𝑥2 changes its orientation.

Let J be given by (56). Then,

(66) J ∗ =
1

4𝜋

𝑁∑︁
𝑘=1

𝜚2
𝑘

∫
𝐿∗
𝑘

d𝑡∗
∫
𝐿∗
𝑘

𝜏∗

𝜏∗− 𝑡∗
d𝜏∗ = −J ,

The relation (66) is established by the change of variables 𝑡∗ = i𝑡 and 𝜏∗ = i𝜏 in the integral (66).
The next term is calculated below

(67) L∗ =
1
𝜋

𝑁∑︁
𝑚,𝑘=1

𝜚𝑘 𝜚𝑚 |𝐺𝑘 | |𝐺𝑚 |𝐸∗
2 (𝑖(𝑎𝑘 − 𝑎𝑘 )) = 2⟨𝜚⟩2 −L.
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One can check that the static moments (41) are transformed after rotation in the following
way

(68) 𝑠∗𝑞𝑚 = i𝑞𝑠𝑞𝑚 (𝑞 = 1,2, . . .).

The same relation (68) holds for the normalized static moments 𝑠(0)∗𝑞𝑚 . Introduce the value

(69) V∗
1 =

2
𝜋

𝑁∑︁
𝑘,𝑚=1

𝜚𝑘 𝜚𝑚 |𝐺𝑘 | |𝐺𝑚 |𝐸3(𝑎∗𝑘 − 𝑎∗𝑘 ) (𝑠
(0)∗
1𝑘 |𝐺𝑘 |

1
2 − 𝑠

(0)∗
1𝑚 |𝐺𝑚 |

1
2 ).

One can see that V∗
1 = −V1. The same arguments yield V∗

2 = −V2 and V∗
3 = −V3, hence,

V∗ = −V.
Let 𝐼 denote the unit tensor. The effective tensor can be calculated by (64) and (65) up to

𝑂 ( |𝜚 |3 𝑓 4)

(70)

𝜀𝜀𝜀⊥ = (1+2⟨𝜚⟩)𝐼 +2 𝑓

(
Re J0 −Im J0

−Im J0 −Re J0

)

+2 𝑓 2

(
Re L0 − Im L0

−Im L0 2−Re L0

)
+2 𝑓 5/2

(
Re V01 −Im V01

−Im V01 −Re V01

)

+2 𝑓 3

(
Re V02 −Im V02

−Im V02 −Re V02

)
+2 𝑓 7/2

(
Re V03 −Im V03

−Im V03 −Re V03

)
.

The value J defined by (56) can be considered as the sum of cumulative shape factors of
inclusions 𝐺𝑘 . The value L defined by (58) represents the mutual locations of inclusions.
Therefore, L can be considered as the cumulative location factor. The term V defined by (58)-
(61) can be considered as the cumulative mixed location-shape factor. It consists of the terms of
orders 𝑂 ( 𝑓 5/2), 𝑂 ( 𝑓 3) and 𝑂 ( 𝑓 7/2) which may vanish.

The formula (70) can be easily implemented. For real permittivity, one can find numerical
examples in [14] not accessible by FEM because of computational restrictions.

1.4. Two-phase composite. Consider a two-phase composite with the same contrast parameter
𝜚 = 𝜚𝑘 . Then, ⟨𝜚⟩ becomes 𝜚 𝑓 . Following [14] introduce the parameters J ′, L′, V′( 𝑗) and
V′ equal to J , L,V( 𝑗) and V, respectively, after the substitution 𝜚𝑘 = 1 into (56)-(61). For
instance,

(71) L′ =
1
𝜋

𝑁∑︁
𝑘,𝑚=1

|𝐺𝑘 | |𝐺𝑚 |𝐸2,𝑚𝑘 .
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In the considered case, (70) becomes

(72)

𝜀𝜀𝜀⊥ = (1+2𝜚 𝑓 )𝐼 +2 𝑓 𝜚2

(
Re J ′

0 −Im J ′
0

−Im J ′
0 −Re J ′

0

)

+2𝜚2 𝑓 2

(
Re L′

0 − Im L′
0

−Im L′
0 2−Re L′

0

)
+2𝜚2 𝑓 5/2

(
Re V′

01 −Im V′
01

−Im V′
01 −Re V′

01

)

+2𝜚2 𝑓 3

(
Re V′

02 −Im V′
02

−Im V′
02 −Re V′

02

)
+2𝜚2 𝑓 7/2

(
Re V′

03 −Im V′
03

−Im V′
03 −Re V′

03

)
.

The component 𝜀22 in the formula (91) from [14] contains an erroneous sign in J and V
corrected here in (72).

The first two terms of (72) deserve special attention. The following universal formulas hold
for any 2D two-phase dispersed composite

(73)
𝜀𝜀𝜀⊥ = (1+2𝜚 𝑓 )𝐼 +𝑂 (𝜚2),

𝜀𝜀𝜀⊥ = (1+2𝜚 𝑓 )𝐼 +2 𝑓 𝜚2

(
Re J ′

0 −Im J ′
0

−Im J ′
0 −Re J ′

0

)
+𝑂 ( 𝑓 2).

The first formula (73) can be independently justified by the Wiener bounds [24] written for
two-phase composites

(74)
[
( 𝑓 𝜀−1

1 + (1− 𝑓 )𝜀−1)
]−1 ≤ 𝜀𝑒 ≤ 𝑓 𝜀1 + (1− 𝑓 )𝜀.

Here, the phases have the permittivity 𝜀1 and 𝜀, the concentrations 𝑓 and 1− 𝑓 , respectively.
We now consider the normalized positive permittivity when 𝜀 = 1. Substitution of 𝜀1 =

1+𝜚
1−𝜚 and

𝜀 = 1 into (74) yields the lower and upper bounds coinciding up to 𝑂 (𝜚2).
The term from the second formula (73) can be determined by the sum

(75) J ′
0 =

𝑁∑︁
𝑘=1

𝑗𝑘 ,

where 𝑗𝑘 means the dimensionless shape factor of 𝑘th inclusion

(76) 𝑗𝑘 =
1

4𝜋 𝑓

∫
𝐿𝑘

d𝑡
∫
𝐿𝑘

𝜏

𝜏− 𝑡
d𝜏.

One can see that 𝑗𝑘 is not changed under a translation 𝑡 ↦→ 𝑡 + 𝑎 since

(77) 𝑗𝑘 (𝑎) − 𝑗𝑘 (0) =
1

4𝜋 𝑓

∫
𝐿𝑘

d𝑡
∫
𝐿𝑘

𝑎

𝜏− 𝑡
d𝜏 =

1
4𝜋 𝑓

∫
𝐿𝑘

d𝑡 𝑎 𝜋i = 0.

The integral (76) is not changed under a scaling 𝑡 ↦→ 𝑐𝑡 since 𝑓 ↦→ 𝑐2 𝑓 .
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We now proceed to consider a two-phase macroscopically isotropic dispersed composite. The
tensor 𝜀𝜀𝜀⊥ = 𝜀𝑒 𝐼 is expressed through the scalar value 𝜀𝑒 called the effective permittivity. Due to
the properties of analytic functions, such a relation can take place for almost all 𝜚 and 𝑓 , if the
following conditions are fulfilled

(78) J ′
0 =V′

0 = 0, L′
0 = 1.

In this case, (72) yields the ClaudiusMossotti approximation with the exactly written precision
in concentration and contrast parameter

(79) 𝜀𝑒 = 1+2𝜚 𝑓 +2𝜚2 𝑓 2 +𝑂 ( |𝜚 |3 𝑓 4) = 1+ 𝜚 𝑓

1− 𝜚 𝑓
+𝑂 ( |𝜚 |3 𝑓 4).

We now end up analyzing the results obtained from the explicit scheme for arbitrary shapes of
inclusions with real permittivity. These results will be developed for complex permittivity and
circular shape.

1.5. First iteration of the implicit scheme for a two-phase composite. In the present section,
we analyze the precision for the first iteration of implicit scheme

(80) 𝜑
(1)
𝑘

(𝑧) − 𝜚

2𝜋𝑖

∫
𝐿𝑘
𝜑
(1)
𝑘

(𝑡)𝐸1(𝑡 − 𝑧)d𝑡 = ∑
𝑚≠𝑘

𝜚

2𝜋𝑖

∫
𝐿𝑚

𝑡𝐸1(𝑡 − 𝑧)d𝑡 + 𝑧.

𝑧 ∈ 𝐺𝑘 .

For simplicity, a two-phase composite is considered when 𝜚 = 𝜚𝑘 for all (𝑘 = 1,2, . . . , 𝑁). We are
interested in the effective constant calculated up to𝑂 ( 𝑓 3) for an arbitrary 𝜚. We now demonstrate
that it is sufficient to determine 𝜑

(1)
𝑘

(𝑧) up to 𝑂 ( 𝑓 2).

Theorem 3. Any approximation 𝜑
(𝑝)
𝑘

(𝑧) of implicit scheme (3) coincides with 𝜑
(1)
𝑘

(𝑧) up to
𝑂 ( 𝑓 2).

Proof. Equation (80) can be simplified up to 𝑂 ( 𝑓 2) to equation

(81) 𝜑
(1)
𝑘

(𝑧) − 𝜚

2𝜋𝑖

∫
𝐿𝑘

𝜑
(1)
𝑘

(𝑡)𝐸1(𝑡 − 𝑧)d𝑡 = 𝑧, 𝑧 ∈ 𝐺𝑘

due to the boundness of the integral operator established in Theorem 1. Here, we use the
asymptotic formula 𝐸1(𝑡 − 𝑧) = 𝐸1(𝑎𝑚 − 𝑎𝑘 ) +𝑂 ( 𝑓 1/2), as 𝑓 → 0, for dispersed composites. It
is worth noting that the integral operator over 𝐿𝑘 increases the precision by the multiplier 𝑓 .
The constant term 𝐸1(𝑎𝑚 − 𝑎𝑘 ) produces a constant that does not impact the final result, hence
it can be discarded. Moreover, in order to find 𝜑

(1)
𝑘

(𝑧) up to 𝑂 ( 𝑓 2) it is sufficient instead of (81)
to solve equation

(82) 𝜑
(1)
𝑘

(𝑧) − 𝜚

2𝜋𝑖

∫
𝐿𝑘

𝜑
(1)
𝑘

(𝑡)
𝑡 − 𝑧

d𝑡 = 𝑧, 𝑧 ∈ 𝐺𝑘 .
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It is justified by means of the expansion

(83) 𝐸1(𝑡 − 𝑧) = 1
𝑡 − 𝑧

− 𝜋(𝑡 − 𝑧) − 𝑆4(𝑡 − 𝑧)3 +𝑂 ( 𝑓 2).

The same arguments hold for an arbitrary iteration order 𝑝. More precisely, equation (3) can
be written up to 𝑂 ( 𝑓 2) in the form

(84) 𝜑
(𝑝)
𝑘

(𝑧) − 𝜚

2𝜋𝑖

∫
𝐿𝑘

𝜑
(𝑝)
𝑘

(𝑡)𝐸1(𝑡 − 𝑧)d𝑡 = 𝑧, 𝑧 ∈ 𝐺𝑘 .

This equation coincides with (81) which has the unique solution for |𝜚 | < 1 in the space H(𝐺𝑘 ).
It is also proved that equations (81) and (82) have solutions coinciding up to 𝑂 ( 𝑓 2).

This proves the theorem.

Introduce the operator bounded in the space H(𝐺𝑘 ) [23]

(85) (S𝑘ℎ) (𝑧) =
1

2𝜋𝑖

∫
𝐿𝑘

ℎ(𝑡)
𝑡 − 𝑧

d𝑡, ℎ ∈ H (𝐺𝑘 ).

Equation (82) has the unique solution in the space H(𝐺𝑘 ) for |𝜚 | < 1 [3]. It can be represented
by the absolutely convergent in 𝜚 series [5, Chapter 2]

(86) 𝜑
(1)
𝑘

(𝑧) = 𝑧+
∞∑︁
ℓ=1

𝜚ℓSℓ
𝑘 𝑧 ≡ 𝑧+ 𝜚𝜙

(1)
𝑘

(𝑧), 𝑧 ∈ 𝐺𝑘 ∪ 𝐿𝑘 ,

where Sℓ
𝑘
𝑧 denotes the consequent application ℓ times of the operator S with the initial function

ℎ(𝑧) = 𝑧.
Two components of the normalized effective permittivity tensor 𝜀𝜀𝜀⊥ are calculated. Calculating

the derivative 𝑑
𝑑𝑧
𝜑
(1)
𝑘

(𝑧)we obtain the formulas valid up to 𝑂 ( 𝑓 2)

(87)
𝜀11 = 1+2𝜚 𝑓 +2Re

∑∞
ℓ=1 𝜚

ℓ+1 ∑𝑁
𝑘=1

∫
𝐺𝑘

𝑑Sℓ
𝑘
𝑧

𝑑𝑧
(𝜉1 + 𝑖𝜉2) d𝜉1d𝜉2,

𝜀12 = −2Im
∑∞

ℓ=1 𝜚
ℓ+1 ∑𝑁

𝑘=1
∫
𝐺𝑘

𝑑Sℓ
𝑘
𝑧

𝑑𝑧
(𝜉1 + 𝑖𝜉2) d𝜉1d𝜉2.

The solution of equation (82) is represented in terms of the series (86) in 𝜚. An analogous
representation holds for the solution of equation (81). Such a series yields the asymptotic formula
(87) for effective constants up to 𝑂 ( 𝑓 2). This confirm the precision up to 𝑂 ( 𝑓 2) for 𝜑

(1)
𝑘

(𝑧)
chosen a priori at the beginning.

The integral equations (81) and (82) can be considered as a method to determine the complex
potentials 𝜑

(1)
𝑘

(𝑧) in inclusions. The complex potential 𝜑(𝑧) in the host can be calculated.
Analysis of this method yields the series (87) in 𝜚, i.e., shows the structure of approximation
and its precision. The formula (87) cannot be considered as a closed form expression until the
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infinite set of compositions of integral operators Sℓ
𝑘
𝑧 is not constructively found. One can apply

another numerical method, FEM, to determine the local field in a composite with one inclusion
𝐺𝑘 . But any method yields at most the term 1+2𝜚 𝑓 plus the term of order 𝑂 ( 𝑓 ) symbolically or
numerically equivalent to the double sum

∑∞
ℓ=1

∑𝑁
𝑘=1 from (87) and does not concern the higher

order term 𝑂 ( 𝑓 2).

1.6. Maxwell’s self-consistent approach. In the present Section, we outline Maxwell’s self-
consistent approach [8]

Consider one inclusion 𝐺1 of permittivity 𝜀1 embedded in the host material of permittivity
𝜀. It is assumed that the permittivity is real and the boundary 𝐿1 = 𝜕𝐺1 is a piece-wise simple
Lyapunov curve. The perfect contact between the components is expressed by equations

(88) 𝑢(𝑡) = 𝑢1(𝑡),
𝜕𝑢

𝜕n
(𝑡) = 𝜀1

𝜕𝑢1
𝜕n

(𝑡), 𝑡 ∈ 𝐿1,

where the functions 𝑢1(𝑧) and 𝑢(𝑧) satisfy Laplace’s equation in the domains 𝐺1 and
𝐺 = Ĉ\(𝐺1 ∪ 𝐿1). Moreover, the functions are continuously differentiable in the closures of
considered domains, and the function 𝑢(𝑧) has a singularity at infinity

(89) 𝑢(𝑧) ∼ 𝑥1, as 𝑧 →∞.

This singularity corresponds to the external potential written in the complex form

(90) 𝑢𝑒𝑥𝑡 (𝑧) = Re 𝑧.

In the considered case of a two-phase composite, we have one dimensionless scalar contrast
parameter

(91) 𝜚 =
𝜀1 −1
𝜀1 +1

.

The considered problem is reduced to the scalar R-linear problem

(92) 𝜑(𝑡) = 𝜑1(𝑡) − 𝜚𝜑1(𝑡), 𝑡 ∈ 𝐿1,

where the functions 𝜑(𝑧) and 𝜑1(𝑧) are analytic in the domains𝐺 and𝐺1, respectively. Moreover,
these functions are continuously differentiable in the closures of considered domains, and the
function 𝜑(𝑧) has a pole at infinity

(93) 𝜑(𝑧) ∼ 𝑧, as 𝑧 →∞.

Apply the Cauchy-type operator for 𝐿1 to the boundary condition (92). We obtain the integral
equation equivalent to (81) in the case 𝜃1 = 0

(94) 𝜑1(𝑧) −
𝜚

2𝜋𝑖

∫
𝐿1

𝜑1(𝑡)
𝑡 − 𝑧

d𝑡 = 𝑧, 𝑧 ∈ 𝐺1.
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Application of the Cauchy-type operator (92) for 𝑧 ∈ 𝐺 yields

(95) 𝜑(𝑧) = 𝜚

2𝜋𝑖

∫
𝐿1

𝜑1(𝑡)
𝑡 − 𝑧

d𝑡 + 𝑧, 𝑧 ∈ 𝐺.

Let 𝜑1(𝑧) be the solution to equation (94). Then, the complex potential 𝜑(𝑧) is calculated by
(95).

One can see that equations (81) and (94) are the same. Therefore, Maxwell’s self-consistent
approach leads to the same equation, obtained by applying the first-order iteration in the implicit
scheme of Schwarz’s method discussed in Section 1.5. It was established that the solution to
equation (81) yields the formulas (87) valid up to 𝑂 ( 𝑓 2). This justifies the validity of Maxwell’s
approach only in the first-order approximation in 𝑓 . The claim often made in various works,
stating that the first-order approximation could be extended to higher orders in 𝑓 without
accounting for higher-order terms 𝜑(𝑝)

1 (𝑧) (𝑝 ≥ 2), lacks any foundation.
Given its limitations, we continue to describe Maxwell’s approach along the lines of [8].

Expand the complex potential 𝜑(𝑧) near infinity in the Laurent series and take the coefficient on
−1

𝑧
. The result value 𝑀1 is called the dipole moment of the inclusion 𝐺1 [18, 1, 21]. It follows

from (95) that

(96) 𝑀1 =
𝜚

2𝜋i

∫
𝐿1

𝜑1(𝑡)d𝑡.

Considering the single inclusion 𝐺𝑘 in the complex plane by the above method, we introduce
the dipole moments of 𝐺𝑘 and estimate it using (86)

(97) 𝑀𝑘 =
𝜚

2𝜋i

∫
𝐿𝑘

𝜑𝑘 (𝑡)d𝑡 = 𝜚
|𝐺𝑘 |
𝜋

+𝑚′
𝑘 , 𝑘 = 1,2, . . . , 𝑛,

where 𝑚′
𝑘
=

𝜚2

2𝜋i

∫
𝐿𝑘
𝜙𝑘 (𝑡)d𝑡 is of order 𝑂 (𝜚2 𝑓 ). It is assumed that 𝑛 = 𝑛(𝑅0) inclusions lie in the

disk |𝑧 | < 𝑅0.
Let the disk |𝑧 | < 𝑅0 be occupied by a material of the real permittivity 𝜀𝑒 and embedded

in a medium with normalized unit permittivity. This problem is a particular case of the above
problem (88)-(89) and can be written in the form

(98) 𝑈 (𝑡) =𝑈1(𝑡),
𝜕𝑈

𝜕n
(𝑡) = 𝜀𝑒

𝜕𝑈1
𝜕n

(𝑡), |𝑡 | = 𝑅0,

where the functions 𝑈1(𝑧) and 𝑈 (𝑧) satisfy Laplace’s equation in the domains |𝑧 | < 𝑅0 and
|𝑧 | > 𝑅0. The considered functions are continuously differentiable in the closures of considered
domains, and the function 𝑈 (𝑧) has the same singularity at infinity as 𝑢(𝑧)

(99) 𝑈 (𝑧) ∼ 𝑥1, as 𝑧 →∞.
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The problem (98)-(99) is reduced to the R-linear problem

(100) Φ(𝑡) = Φ1(𝑡) − 𝜚𝑒Φ1(𝑡), |𝑡 | = 𝑅0,

where

(101) 𝜚𝑒 =
𝜀𝑒 −1
𝜀𝑒 +1

.

The functions Φ(𝑧) and Φ1(𝑧) are analytic in the domains |𝑧 | < 𝑅0 and |𝑧 | > 𝑅0, respectively.
Moreover, these functions are continuously differentiable in the closures of considered domains,
and the function Φ(𝑧) has a pole at infinity

(102) Φ(𝑧) ∼ 𝑧, as 𝑧 →∞.

The problem (100)-(102) has the following solution up to an additive arbitrary constant

(103) Φ(𝑧) = 𝑧−
𝜚𝑒𝑅

2
0

𝑧
, Φ1(𝑧) = 𝑧.

Suppose that 𝑛 inclusions 𝐺𝑘 (𝑘 = 1,2, . . . , 𝑛) are located inside the large disk |𝑧 | < 𝑅0. Let the
effective permittivity of the homogenized large disk |𝑧 | < 𝑅0 be equal to the scalar 𝜀𝑒. The dipole
moment of Φ(𝑧) equals 𝜚𝑒𝑅

2
0. Following Maxwell, we equate the sum of the dipole moments of

𝐺𝑘 to the total dipole moment of the homogenized material of the large disk

(104) 𝜚𝑒𝑅
2
0 =

𝑛∑︁
𝑘=1

𝑀𝑘 ≡ 𝜚

𝑛∑︁
𝑘=1

|𝐺𝑘 |
𝜋

+𝑛𝑚′,

where 𝑚′ = 1
𝑛

∑𝑛
𝑘=1𝑚

′
𝑘
. Taking into account (101) consider (104) as an equation on 𝜀𝑒. Its

solution yields the effective permittivity of the disk |𝑧 | < 𝑅0

(105) 𝜀𝑒 (𝑛) =
1+𝑅−2

0
∑𝑛

𝑘=1 𝑀𝑘

1−𝑅−2
0

∑𝑛
𝑘=1 𝑀𝑘

=

1+ 𝜚

𝜋𝑅2
0

∑𝑛
𝑘=1 |𝐺𝑘 | +𝑛𝑚′𝑅−2

0

1− 𝜚

𝜋𝑅2
0

∑𝑛
𝑘=1 |𝐺𝑘 | +𝑛𝑚′𝑅−2

0
.

It is assumed that 𝜀𝑒 (𝑛) tends to the effective permittivity of composite 𝜀𝑒, as 𝑛→∞⇔ 𝑅0 →∞.
In particular, it is assumed that the concentration is properly defined

(106) 𝑓 = lim
𝑛→∞

𝑛∑︁
𝑘=1

𝑛|𝐺𝑘 |
𝜋𝑅2

0
.

Bear in mind that the homogenized medium is initially assumed macroscopically isotropic.

Remark 2. The existence of the concentration, the limit (106), does not guarantee that a
composite is homogenized, i.e., there exists the limit 𝜀𝑒 = lim𝑛→∞ 𝜀𝑒 (𝑛) even in the second-
order approximation 𝑂 ( 𝑓 2) [10]. This implies that any universal formula for 𝜀𝑒 holds only
up to 𝑂 ( 𝑓 2) except at neutral inclusions. The devil is in the details, in the term of order 𝑓 2.



19

This mathematical curiosity arises in self-consistency. The concept becomes clear through the
analysis of two half-planes 𝑥1 > 0 and 𝑥1 < 0 comprised of square and hexagonal arrays of disks
having the same concentration. These arrays maintain the same concentration but have different
effective permittivity.

Consider the case when |𝐺1 | = |𝐺2 | = . . . = |𝐺𝑁 | and 𝑚′
1 =𝑚′

2 = . . . =𝑚′
𝑁

. Then, (105) yields

(107) 𝜀𝑒 =
1+ 𝜚 𝑓 +𝑚′ 𝑓 𝜋 |𝐺1 |−1

1− 𝜚 𝑓 −𝑚′ 𝑓 𝜋 |𝐺1 |−1 +𝑂 ( 𝑓 2).

One can check that the term 𝑚′ 𝑓 𝜋 |𝐺1 |−1 is of order 𝑂 (𝜚2 𝑓 ).
Let equal disks of radius 𝑟 be embedded in the host materials. Using the relation 𝑡 = 𝑟2

𝑡
on the

circle |𝑡 | = 𝑟 rewrite equation (94)

(108) 𝜑1(𝑧) −
𝜚

2𝜋𝑖

∫
|𝑡 |=𝑟

𝜑1

(
𝑟2

𝑡

)
𝑡 − 𝑧

d𝑡 = 𝑧, |𝑧 | < 𝑟.

By the symmetry principle the function 𝜑1

(
𝑟2

𝑡

)
is analytically continued into the domain |𝑧 | > 𝑟 .

We calculate the integral from (108) and obtain

(109) 𝜑1(𝑧) = 𝜚𝜑1 (0) + 𝑧, |𝑧 | < 𝑟.

Determine 𝜑(𝑧) by (92) up to an additive constant

(110) 𝜑(𝑧) = 𝑧− 𝜚𝑟2

𝑧
, |𝑧 | > 𝑟.

Therefore, the dipole for the disk 𝑀1 = 𝜚𝑟2 and 𝑚′
1 = 0 by (97). Then, (107) becomes the famous

Maxwell-Garnett (Clausius-Mossotti, Maxwell, Lorenz, Lorentz, Maxwell-Garnett) approxima-
tion

(111) 𝜀𝑒 =
1+ 𝑓 𝜚

1− 𝑓 𝜚
+𝑂 ( 𝑓 3).

The precision is increased here according to [13] established for equal disks.
Some comments are needed to explain the formula (111). For any positive 𝑓 , it is easy to

present such a location of perfectly conducting disks (𝜚 = 1) that a collection C𝑀 will contain
two percolation chains along the axes. Hence, the averaged permittivity of C𝑀 will be infinite.
It cannot be reached by the approximation (111). Conversely, any macroscopically isotropic
composite with circular inclusions satisfies (111) [13]. This assertion does not contradict the
previous observation since the formula (111) is asymptotic with a positive infinitesimally small
number 𝑓 . In this sense, the asymptotic formula (111) is universal and holds for sufficiently
small 𝑓 .
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Let the ellipse 𝐿1 be defined by equation 𝑥2
1

(1+𝛼)2 +
𝑥2

2
(1−𝛼)2 = 1, where for definiteness 0 < 𝛼 < 1.

The semi-axes of the ellipse are equal to (1+𝛼) and (1−𝛼). The ellipse equation can be written
in the complex form

(112) 𝑧 = 𝑧
1+𝛼2

2𝛼
− 1−𝛼2

2𝛼

√︁
𝑧2 −4𝛼, 𝑧 ∈ 𝐿1,

where the square root is defined on the complex plane without the slit (−2
√
𝛼,2

√
𝛼) on the

𝑥1-axis. Moreover, the square root tends to +∞ as 𝑧 = 𝑥1 > 0 tends to infinity along the real axis.
Consider the R-linear problem (92)-(93). One can check that the functions

(113) 𝜑1(𝑧) =
𝑧

1− 𝜚𝛼
, 𝜑(𝑧) = 1

1− 𝜚𝛼

[
𝑧

(
1− 𝜚

1+𝛼2

2𝛼

)
+ 𝜚

1−𝛼2

2𝛼

√︁
𝑧2 −4𝛼

]
satisfy the problem (92)-(93). The dipole moment of the ellipse has the form

(114) 𝑀1 = 𝜚
1−𝛼2

1− 𝜚𝛼
.

Consider equal non-overlapping elliptic inclusions 𝐺𝑘 obtained from 𝐺1 by translation and
rotation by an angle 𝜃𝑘 . The complex potentials for the inclusion 𝐺𝑘 can be obtained from (113)
by the transformation 𝑧 ↦→ 𝑧 exp(i𝜃𝑘 ) + 𝑎𝑘 . The dipole moment has the form

(115) 𝑀𝑘 = 𝜚
1−𝛼2

1− 𝜚2𝛼2 [1+ exp(i𝜃𝑘 )𝜚𝛼] .

Let inclination angle 𝜃 be considered a random variable uniformly distributed on (0, 𝜋). Then,
the mathematical expectation E[𝜃] = 0 and

(116) lim
𝑛→∞

1
𝑛

𝑛∑︁
𝑘=1

𝑀𝑘 =
𝜚 |𝐺1 |
𝜋

1
1− 𝜚2𝛼2 ,

since the area of ellipse holds |𝐺1 | = 𝜋(1−𝛼2). Using this formula, we obtain from (105) and
(106)

(117) 𝜀𝑒 =
1+ 𝜚 𝑓

1−𝜚2𝛼2

1− 𝜚 𝑓

1−𝜚2𝛼2

+𝑂 ( 𝑓 2) = 1+ 2𝜚 𝑓
1− 𝜚2𝛼2 +𝑂 ( 𝑓 2).

2. Effective permittivity tensor for multi-phase composites

Above in this note, we derived formulas for real-valued permittivity. We now begin to explore
complex values of the normalized permittivity of components 𝜀𝑘 . Consequently, the contrast
parameter 𝜚𝑘 also becomes complex. Building upon the foundations laid out, we extend these
formulas to the complex domain through analytic continuation in terms of 𝜚𝑘 . To ensure the
validity of this continuation, it is imperative that we establish a groundwork for understanding
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the interplay between complex permittivity and its matrix representation. This will be our main
goal as we move forward.

The effective permittivity tensor with complex components will be denoted in the same way

(118) 𝜀𝜀𝜀⊥ =

(
𝜀11 𝜀12

𝜀21 𝜀22

)
,

where 𝜀12 = 𝜀21.
Introduce the averaged value of a function 𝐹 (𝑧) over the unit periodicity cell 𝑄

(119) ⟨𝐹 (𝑧)⟩ =
∫
𝑄

𝐹 (𝑥1 + 𝑖𝑥2) d𝑥1d𝑥2.

Here, the real plane coordinates x = (𝑥1, 𝑥2) are identified with the complex coordinate 𝑧 =

𝑥1+ i𝑥2. The complex effective permittivity tensor can be defined through the following relation

(120) ⟨𝜀(𝑧)∇𝑢(𝑧)⟩ = 𝜀𝜀𝜀⊥⟨∇𝑢(𝑧)⟩,

where 𝜀(𝑧) = 1 in 𝐺 and 𝜀(𝑧) = 𝜀𝑘 in 𝐺𝑘 . The value ∇𝑢𝑒𝑥𝑡 := ⟨∇𝑢(𝑧)⟩ determines the complex
external flux applied to the unit periodicity cell 𝑄. It follows from the theory of homogenization
[2, 6] that in order to determine the tensor 𝜀𝜀𝜀⊥, it is sufficient to find two local fields ∇𝑢(𝑧) for
two external fluxes

(121) ∇𝑢𝑒𝑥𝑡 [1] =
(

1
0

)
and ∇𝑢𝑒𝑥𝑡 [2] =

(
0
1

)
.

Let us fix the first external flux from (121). Consider the vector equality with complex
components

(122) ⟨∇𝑢⟩ =
∫
𝐺

∇𝑢 d𝑥1d𝑥2 +
𝑁∑︁
𝑘=1

∫
𝐺𝑘

∇𝑢𝑘d𝑥1d𝑥2.

Transform the double integrals by the divergence theorem associated to the Ostrogradsky-Gauss
theorem of real vector analysis

(123)
∫
𝐺

∇𝑢 d𝑥1d𝑥2 =

∫
𝜕𝑄

𝑢n d𝑠+
𝑁∑︁
𝑘=1

∫
𝜕𝐺𝑘

(𝑢𝑘 −𝑢)n d𝑠,

where n denotes the outward normal unit vector to the boundary 𝜕𝐺 = 𝜕𝑄−∑𝑁
𝑘=1 𝜕𝐺𝑘 . It follows

from the quasi-periodicity conditions that the integrals over 𝜕𝐺𝑘 vanish. The integral over 𝜕𝑄
is calculated by the jumps of 𝑢 per unit periodicity cell 𝑄, see for details Chapter 3 and Remark
5 in Section 2.2.2 of [5]. Ultimately, we have

(124) ⟨∇𝑢(𝑧)⟩ =
(

1
0

)
and 𝜀𝜀𝜀⊥⟨∇𝑢(𝑧)⟩ =

(
𝜀11

𝜀21

)
.
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We now proceed to calculate the left part of (120) which has to be equal to the second vector
of (124)

(125)

(
𝜀11

𝜀21

)
=

∫
𝐺

∇𝑢 d𝑥1d𝑥2 +
𝑁∑︁
𝑘=1

𝜀𝑘

∫
𝐺𝑘

∇𝑢𝑘d𝑥1d𝑥2.

Greens formula

(126)
∫
𝑆

(
𝜕𝐹

𝜕𝑥1
− 𝜕𝐺

𝜕𝑥2

)
d𝑥1d𝑥2 =

∫
𝜕𝑆

𝐺 d𝑥1 +𝐹 d𝑥2.

The components of (125) can be written in the form

(127) 𝜀11 =

∫
𝜕𝑄

𝑢 d𝑥2 +
𝑁∑︁
𝑘=1

(𝜀𝑘 −1)
∫
𝜕𝐺𝑘

𝑢𝑘 d𝑥2,

(128) −𝜀21 =

∫
𝜕𝑄

𝑢 d𝑥1 +
𝑁∑︁
𝑘=1

(𝜀𝑘 −1)
∫
𝜕𝐺𝑘

𝑢𝑘 d𝑥1.

Using the jump conditions per unit periodicity cell 𝑄 we calculate the integrals over 𝜕𝑄

(129)
∫
𝜕𝑄

𝑢 d𝑥1 = −
∫ 1

2

− 1
2

[
𝑢

(
𝑥1 +

i
2

)
−𝑢

(
𝑥1 −

i
2

)]
d𝑥1 = 0,

(130)
∫
𝜕𝑄

𝑢 d𝑥2 =

∫ 1
2

− 1
2

[
𝑢

(
1
2
+ i𝑥2

)
−𝑢

(
−1

2
+ i𝑥2

)]
d𝑥2 = 1.

Again, applying Greens formula for 𝐺𝑘 we obtain

(131)

(
𝜀11

𝜀21

)
=

(
1
0

)
+

𝑁∑︁
𝑘=1

(𝜀𝑘 −1)
∫
𝐺𝑘

∇𝑢𝑘 d𝑥1d𝑥2.

We have the representation

(132) 𝜓𝑘 (𝑧) =
1
2
(𝐼 +𝛼𝛼𝛼𝑘 )

©­­­«
𝜕𝑢′

𝑘

𝜕𝑥1
− i 𝜕𝑢

′
𝑘

𝜕𝑥2

𝜕𝑢′′
𝑘

𝜕𝑥1
− i 𝜕𝑢

′′
𝑘

𝜕𝑥2

ª®®®¬ , 𝑧 ∈ 𝐺𝑘 ,

which can be written in the equivalent form

(133)
©­­­«

𝜕𝑢′
𝑘

𝜕𝑥1
− i 𝜕𝑢

′
𝑘

𝜕𝑥2

𝜕𝑢′′
𝑘

𝜕𝑥1
− i 𝜕𝑢

′′
𝑘

𝜕𝑥2

ª®®®¬ =
2

|1+ 𝜀𝑘 |2

(
1+ 𝜀′

𝑘
𝜀′′
𝑘

−𝜀′′
𝑘

1+ 𝜀′
𝑘

)
𝜓𝑘 (𝑧), 𝑧 ∈ 𝐺𝑘 .
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Then, the gradient ∇𝑢𝑘 can be written in terms of the complex potentials

(134) ∇𝑢𝑘 ≡
©­­­«

𝜕𝑢′
𝑘

𝜕𝑥1
+ i 𝜕𝑢

′′
𝑘

𝜕𝑥1

𝜕𝑢′
𝑘

𝜕𝑥2
+ i 𝜕𝑢

′′
𝑘

𝜕𝑥2

ª®®®¬ =
2

𝜀𝑘 +1

©­­­«
Re 𝜓1𝑘 + iRe 𝜓2𝑘

−Im 𝜓1𝑘 − iIm 𝜓2𝑘

ª®®®¬ .
where 𝜓1𝑘 (𝑧) and 𝜓2𝑘 (𝑧) are coordinate of the vector function 𝜓𝑘 (𝑧).

Substitute (134) into (131)

(135)

(
𝜀11

𝜀21

)
=

(
1
0

)
+2

𝑁∑︁
𝑘=1

𝜚𝑘

∫
𝐺𝑘

(
Re 𝜓1𝑘 + iRe 𝜓2𝑘

−Im 𝜓1𝑘 − iIm 𝜓2𝑘

)
d𝑥1d𝑥2,

where the scalar values 𝜚𝑘 can be found [12]. Therefore, in order to calculate (135) we have to
find the vector function 𝑑

𝑑𝑧
𝜑𝑘 (𝑧) =𝜓𝑘 (𝑧) = (𝜓1𝑘 (𝑧),𝜓2𝑘 (𝑧))⊤ satisfying the considered boundary

value problem.

3. Integral equations and their approximate solution for multi-phase composites

The scalar R-linear problem was reduced to the system of scalar integral equations. Using
the same arguments, we reduce the vector R-linear problem to the vector system of integral
equations up to an arbitrary additive constant vector

(136) 𝜑𝜑𝜑𝑘 (𝑧) =
𝑁∑︁

𝑚=1

1
2𝜋𝑖

∫
𝐿𝑚

𝛽𝛽𝛽𝑚𝜑𝜑𝜑𝑚 (𝑡)𝐸1(𝑡 − 𝑧) d𝑡 +
(
𝑧

0

)
, 𝑧 ∈ 𝐺𝑘 (𝑘 = 1,2, . . . , 𝑁).

In the scalar case, the contrast approximations were defined by the constant 𝜚0 =

max𝑘=1,2,...,𝑁 |𝜚𝑘 |. In the vector-matrix case, introduce the spectral norm

(137) 𝜚0 = max
𝑚=1,2,...,𝑁

����𝜀𝑚 −1
𝜀𝑚 +1

���� .
Following Section 1.3, we find an approximate solution to equations (136) by two iterations.

Similar to (29) the first-order term has the form

(138) 𝜑𝜑𝜑
(1)
𝑘

(𝑧) =
(
𝑧

0

)
+𝑂 (1), 𝑧 ∈ 𝐺𝑘 .

The second order approximation is found similar to (31)

(139) 𝜑𝜑𝜑
(2)
𝑘

(𝑧) =
𝑁∑︁

𝑚=1

𝛽𝛽𝛽𝑚

2𝜋𝑖

∫
𝐿𝑚

(
𝑡

0

)
𝐸1(𝑡 − 𝑧) d𝑡 +

(
𝑧

0

)
+𝑂 (𝜚2

0), 𝑧 ∈ 𝐺𝑘 .
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Below, we omit the precision in 𝜚0 for shortness and keep track of the precision in 𝑓 .
Differentiate equation (139)

(140) 𝜓
(2)
𝑘

(𝑧) = 𝑑

𝑑𝑧
𝜑𝜑𝜑
(2)
𝑘

(𝑧) =
(

1
0

)
+

𝑁∑︁
𝑚=1

𝛽𝛽𝛽𝑚

2𝜋𝑖

∫
𝐿𝑚

(
1
0

)
𝑡 𝐸2(𝑡 − 𝑧) d𝑡,

Using the relation

(141) 𝛽𝛽𝛽𝑚

(
1
0

)
=

1
|1+ 𝜀𝑚 |2

(
|𝜀𝑚 |2 −1

2𝜀′′𝑚

)
write (140) in the form

(142) 𝜓
(2)
𝑘

(𝑧) =
(

1
0

)
+ 1
𝜋

𝑁∑︁
𝑚=1

1
|1+ 𝜀𝑚 |2

(
|𝜀𝑚 |2 −1

2𝜀′′𝑚

)
𝑑𝑔𝑚

𝑑𝑧
(𝑧), 𝑧 ∈ 𝐺𝑘 .

where 𝑔𝑚 (𝑧) has the form (33), hence,

(143)
𝑑𝑔𝑚

𝑑𝑧
(𝑧) = 1

2𝑖

∫
𝐿𝑚

𝑡 𝐸2(𝑡 − 𝑧) d𝑡.

Write the relation (142) by coordinates

(144)
𝜓
(2)
1𝑘 (𝑧) = 1+ 1

𝜋

∑𝑁
𝑚=1

|𝜀𝑚 |2−1
|1+𝜀𝑚 |2

𝑑𝑔𝑚
𝑑𝑧

(𝑧)

𝜓
(2)
2𝑘 (𝑧) =

1
𝜋

∑𝑁
𝑚=1

2𝜀′′𝑚
|1+𝜀𝑚 |2

𝑑𝑔𝑚
𝑑𝑧

(𝑧), 𝑧 ∈ 𝐺𝑘 .

Taking into account the identity

(145) 𝜚𝑚 ≡ 𝜀𝑚 −1
𝜀𝑚 +1

=
|𝜀𝑚 |2 −1+2i𝜀′′𝑚

|1+ 𝜀𝑚 |2
,

find the vector

(146)

(
Re 𝜓 (2)

1𝑘 + iRe 𝜓 (2)
2𝑘

−Im 𝜓
(2)
1𝑘 − iIm 𝜓

(2)
2𝑘

)
=

(
1
0

)
+ 1
𝜋

𝑁∑︁
𝑚=1

𝜚𝑚

(
Re 𝑑𝑔𝑚

𝑑𝑧

−Im 𝑑𝑔𝑚
𝑑𝑧

)
.

Introduce the averaged scalar contrast parameter over inclusions similar to the case of real-valued
permittivity (35)

(147) ⟨𝜚⟩ :=
𝑁∑︁
𝑘=1

𝜚𝑘 |𝐺𝑘 |.
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Substitute (146) into (135)

(148)

(
𝜀11

𝜀21

)
= (1+2⟨𝜚⟩)

(
1
0

)

+ 2
𝜋

∑𝑁
𝑘=1

∑𝑁
𝑚=1 𝜚𝑘 𝜚𝑚

∫
𝐺𝑘

(
Re ℎ𝑘𝑚

−Im ℎ𝑘𝑚

)
d𝑥1d𝑥2 +𝑂 (𝜚3

0 𝑓
7/2),

where ℎ𝑘𝑚 has the form (37) and 𝜚0 is given by (137). The precision of (148) is taken as the
precision of (36) due to the same application of Schwarz’s scheme. One can see that the same
values ℎ𝑘𝑚 are needed for the calculation of the permittivity tensor in the case of real-valued
permittivity by (36) and of complex permittivity by (148). The formulas (36) and (148) are
similar, and (148) has to include (36) as a particular case. The difference between (36) and (148)
consists in the assumption on the contrast parameters 𝜚𝑘 which have to be real in (36) and can
be complex in (148).

This observation allows us to state the following assertion
Rule R→→→ C:
Any formula for the real-valued permittivity of components is transformed into
a formula for the complex permittivity.

This Rule is loosely stated and needs explanations since a formula for the real-valued permit-
tivity must first be written in the corresponding form to be extended to the complex permittivity.
The formulas from [5, 14] and others were obtained using the classic scalar complex potentials.
For instance, the formula (36) for the real-valued permittivity was written in the form

(149) 𝜀11 − i𝜀21 = 1+2⟨𝜚⟩ + 2
𝜋

∑𝑁
𝑘=1

∑𝑁
𝑚=1 𝜚𝑘 𝜚𝑚

∫
𝐺𝑘

ℎ𝑘𝑚 d𝑥1d𝑥2 +𝑂 (𝜚3
0 𝑓

7/2).

Hence, two real equations (36) are written in the form of one complex equation. In order to
extend (149) to the complex permittivity, first, one has to write (149) in the vector form (148).
After this, one can extend the real-valued vector to the complex-valued vector, assuming that
the contrast parameters 𝜚𝑘 become complex.

Now, we take the second external flux (121). Analogously the previous transformations, we
arrive at the formula

(150)

(
𝜀22

−𝜀12

)
=

(
1
0

)
+2

𝑁∑︁
𝑘=1

𝜚𝑘

∫
𝐺𝑘

(
Re 𝜓1𝑘 + 𝑖Re 𝜓2𝑘

−Im 𝜓1𝑘 − 𝑖Im 𝜓2𝑘

)
d𝑥1d𝑥2,
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where 𝜓1𝑘 and 𝜓2𝑘 differ from the values of (135) calculated for the first flux. Two vector
equations (135) and (148) can be written in the form

(151)

(
𝜀11 𝜀12

𝜀21 𝜀22

)
=

(
1 0
0 1

)
+2

∑𝑁
𝑘=1 𝜚𝑘×

∫
𝐺𝑘

(
Re 𝜓1𝑘 [1] + iRe 𝜓2𝑘 [1] Im 𝜓1𝑘 [2] + iIm 𝜓2𝑘 [2]

−Im 𝜓1𝑘 [1] − iIm 𝜓2𝑘 [1] Re 𝜓1𝑘 [2] + iRe 𝜓2𝑘 [2]

)
d𝑥1d𝑥2,

where the subscripts [1] and [2] indicate the solutions constructed by the corresponding external
fields (121).

The formula (70) was derived for the real-valued permittivity. Using Rule R→→→ C one can
apply this formula to the complex permittivity

(152)

𝜀𝜀𝜀⊥ = (1+2⟨𝜚⟩)𝐼 +2 𝑓

(
Re J0 −Im J0

−Im J0 −Re J0

)

+2 𝑓 2

(
Re L0 − Im L0

−Im L0 2−Re L0

)
+2 𝑓 5/2

(
Re V01 −Im V01

−Im V01 −Re V01

)

+2 𝑓 3

(
Re V02 −Im V02

−Im V02 −Re V02

)
+2 𝑓 7/2

(
Re V03 −Im V03

−Im V03 −Re V03

)
+𝑂 (𝜚3

0 𝑓
4),

where the values from (152) are calculated by the same formulas (63) and (56)-(61).
The first invariant of the tensor 𝜀𝜀𝜀⊥ takes the form

(153)
1
2
(𝜀11 + 𝜀22) = 1+2⟨𝜚⟩ +2⟨𝜚⟩2 +𝑂 (𝜚3

0).

One can see that it does not depend on the location of inclusions in the considered approximation.
The normalized longitudinal permittivity of the considered fibrous composite is calculated by

the mean value, see formula (3.142) from [25]

(154) 𝜀∥ = 1− 𝑓 +
𝑁∑︁
𝑘=1

𝜀𝑘 𝑓𝑘 ,

where 𝑓𝑘 stands for the concentration of the phase of permittivity 𝜀𝑘 .
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