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Abstract

We develop a new method of complex potentials and constructive results on the R-linear prob-
lem. The proposed method yields approximate and exact analytical formulas for the effective
properties of dispersed composites with the strictly derived precision of their validity in concen-
tration f and the contrast parameter o for two-phase composites. First, we developed formulas
for real-valued permittivity. Next, we explore complex values of the normalized permittivity of
components &; for multi-phase composites. Consequently, the contrast parameters oy also be-
come complex. Building upon the foundations laid out in this chapter, we extend these formulas
to the complex domain through analytic continuation in terms of of. To ensure the validity of
this continuation, it is imperative that we establish a groundwork for understanding the interplay

between complex permittivity and its matrix representation.

1. IMPLEMENTATION OF SCHWARZ’S METHOD

1.1. Explicit and implicit iterative schemes. The method of successive approximations can
be applied to equations of Schwarz’s method by means of two different iterative schemes. The

explicit iteration scheme has the form

(1) 90,(CO) (2) =z,

2) 6P (2) = N T PV (E (t-2) di+2, 2€ Gy, (p=1.2....).
I



The implicit iteration scheme to equations of Schwarz’s method [12] with the same zero

approximation (1) has the form

o7 (D)= £ [ P ()E (1 -2)di =
3)
S22 [, @V OE (-2t 42, z€Gr (p=1.2,...).

The implicit scheme corresponds to equation of Schwarz’s method.

In order to reduce computations, equations (1)-(3) are written without additive constants c.
First, it is related to the observation that we need the derivative ¢} (z) to compute the effective
constants. Second, an additive constant C in the approximation (p(p 1)(z) yields an additive

constant in the next approximation go(p ) (z). This fact is established by the residue theorem

1 - —_—
4) 2—7”/ CE((t—z)dt =0,k C, z€ Gy,
L

where d,,; stands for the Kronecker delta. Application of (1)-(3) leads to a power series in o.
This is the reason why the method is also called contrast expansion [9, 22, 5].
Let Ao be given and & unknown functions from the space H (Gy) for a fixed k. The following

integral equation has to be solved in every iteration step of (3)

(5) h(z )——/ h()E (t—2)dt = ho(2), z € Gy.
Introduce the compact integral operators in the space H (Gy)

(6) (Prh)(z) = 21” / h(t)Eo(t—z)dt  z € Gy,

where the function E((z) analytic in the periodicity cell Q is determined by its Taylor series
1 < _
(7) Eo(e) =Ei(2) =~ = ) Su .
k=1

Write equation (5) in the operator form
(8) h—0i(Sh+ Prh) = ho,
where

h(1)
ot Jp, iedt, 2€ G,

©) Sh(z) =
Y+ 5 [, War, zelLy.
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Here, the boundary values of S/(z) on L are written in accordance with Sochocki’s formulas

h(t 1
(10) lim— Qd = h( )+—/ (—)dt 7 € Lg.
(—z 2mi Jp, =4 2 t—z
{eGy

Consider the integral equation similar to (8)

(11) h—QkShZho.

The singular operator S is bounded in the space H(L;) of Holder continuous functions
on the curve L; [23]. The space H (G} ) of functions analytically continued from Lj into G
can be considered as a closed subspace of H(Ly). The following two theorems justify the

approximation schemes developed in the next sections
Theorem 1 ([17]). The operators S and S + Py are bounded in H (Gy).

Theorem 2 ([3]). Equation (11) has the unique solution, which can be written by the inverse
operator correctly defined and bounded in H(Gy) for |ox| < 1

(12) /’l=(I—QkS)_lho=h0+Qk8h0+Q%82ho+....

An analogous assertion takes place for equation (5) [5].
The both methods (2) and (3) converge absolutely for any fixed |ox| < 1 [15, 16]. In the case
|ox| = 1, the uniform convergence can be established by means of the regularization.

Equations (2) can be written in the form

1 1
o @)= 8] Py +ZZ=IQm(Pm90§f ))(Z)+z,

ZEGk, (p = 1,2,...).

(13)

Equations (3) can be modified by splitting the integral term with pth iteration onto two terms

with pth and (p — 1)th iterations as follows

pUearyy (p)(f% o ( - 1>)(Z)
(14)

$Ypa 2 [ e VOE(-Ddi+z, 2€G (p= 120,

The iterative scheme (14) can be treated as a mixed scheme when the self-induced charge of
kth inclusions is partly included in the pth approximation and partly in the previous (p — 1)th
approximation.

Thus, Schwarz’s method can be implemented by means of explicit and implicit iterative

schemes with different modifications. The scheme (2) corresponds to the contrast expansion,
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(3) to the expansion in the concentration of inclusions called cluster expansion in [22]. These
two principal schemes with modifications like (14) have a lot of other names usually related to
self-consistent methods. One can meet manipulations with the distorted balance of precision as
in the difference scheme and Mori-Tanaka method.

For example, consider the approximation of (14) neglecting the terms with Py for a two-phase

composites (0x = 0)

o () -5k [ o (L ~
(15)

-1
szik%/ngaf,f )(t)El(t—z)dt+Z, z€Gy, (p=1,2,...).

Such an approximation can be accompanied by engineering arguments about the balance of
flux produced by one inclusion and the flux by all the others. This is true up to O(o?). Let the
problem is solved in the first iteration. It can be solved analytically or numerically, it doesn’t
matter. But the problem is solved up to O(o?). Now, let the second iteration is applied. The
obtained second-order solution contains the term o analytically or numerically. The higher-
order terms of f accompanying o” can arise. And so forth. After a few iterations, one arrives at
a formula or numerical data with a redundant tail of high-order terms in o and f.

Equations (15) can be “improved” by the approximation of integral operator
0 (Pk()";((p_l)) (z) = oCy for some constants Ci. Such a type of approximation was proposed

for elastic composites in [20]. It was based on the integral approximation, hence, was of order
O(f). This approximation was used in [7] for a square array of circular inclusions. Though the
applied method gave the proper result of order O( f), formulas for the effective constants were
written with the tails up to O( f%).

Other schemes based on various mathematical manipulations, such as Brugemann’s differ-
ential scheme, can be considered as a separate method. However, if one examines the result
within the obtained precision, it becomes clear that the result coincides with the dilute Clausius-
Mossotti (Maxwell) approximation written in another asymptotic form. This question will be

discussed below.

1.2. Contrast expansion (explicit scheme). In the present section, we pay attention to the
explicit iteration scheme One can see that every iteration (2) increases the contrast parameters
precision by the multiplier of order O(|o|). The parameter o is used with the modulus in order

to avoid confusion in other places when o = gy for a two-phase composite. The integration



operator increases the precision by O( f), since

(16 Fro16il (g [ Panan).
where the operator in the parentheses is bounded in H (Gy). The multiplier |G| is of order f.
Therefore,
(p)

d dg
(17) P (5) = (@) +0(el"™' /). z€GiULs.
Integrating this relation we estimate the integral

(p)

d de

(18 [ @ andn= [ F@ dadaro(est™.
G dz G dz

This integral will be applied to determine the effective constants. The multiplier o,, in (2)
guarantees the required precision in 0. We will use the expansion of the kernel E| (7 — z) in terms
of order £!/? that requires a more careful study of precision in concentration. Hereafter in this
section, the clear behavior of precision in o at every step is omitted for shortness.

We now proceed to develop a symbolic algorithm for the effective constants for a given p. It
follows from (2) that the functions go(q) (z) for ¢ = p— 1 have to be determined up to O ( f7*+1/2).
The kernel E(t — z) in the integral from (2) for go(q)(z) has to be estimated with the same
precision.

Introduce the integral frequently met in the theory of analytic functions [23]

1
(19) Ji(2) = —dt z € Gg.
27T L t—
This function is analytic in G and Holder continuous in G U L [19, 23]. It is worth noting that
the limit values of Ji(z) as z — Ly after the application of Sochocki’s formula can be written
by means of the singular integral
(20) Ji(7) = _+ ! ! dr €L
T)==+-— —dt, T .
g 2 2miJp -1 g

The iterations (13) include the integral
Q1) 19(z) = / 09 (1) Er(1-7) dr.
L

It follows from ¢,, )(t) =t and (7) that the singular part of the integral I (z) coincides with
Jx(z). The integral (21) will be estimated below in two cases.

1) First, it is assumed that m # k. Consider the simple expression

(22) t—z=(t—ap)+(an—ar)—(z—ay),
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where |a,, — ay| is the dominating term in comparison with |t — a,,| and |z — a|. The value

|t —am +ay —z| is of order O(r) = O(f'/?). The Taylor approximation of E; (f — z) holds near

Ay, —ag
2g+1

(23) E\(t-z) = Z (=1)"Eps1(am —ap)(t —am+ax—2)" +O(f4*).
n=0

Using (23) we estimate the integral (21)

2q+1

4 19 = Z( 1) Ensi (am - ak>— /L ol (1) (t = am+ax—2)"dt +O(f7).

ii) Consider now the case m = k. Using (7) we approximate E|(f — z) in G by expression

1 q+1
(25) Ei(t-2) = —— = Sn(t-2)""'+0(f7*).
t-z n=1
Substitution of (25) into (21) yields
— dr g+l S -
e 1@ =5 [ 670y 2 [ oD a0,
Lk r—z o 2ﬂ7 L
The asymptotic formulas (24) and (26) yield the estimation for
27) o (2) =2+ Z onlif 1V (2).
m=1

1.3. Second iteration in contrast expansion. The general method described above can be
implemented in symbolic form and simplified within a fixed precision. We illustrate the general
scheme for p = 2. Even such a low-order approximation yields a new analytical approximation

for the effective permittivity tensor. We will use the following approximation

i =1+2Re T3 ok [, o7 (&1 +i&2) dé1dér + O (10 f712),
(28)

e =-2Im X3 ok [, Lo? (61+i8) derdés +O(loP f712).

It will be seen below that it is sufficient to take the approximation - cp( ) up to O(|o?f>/?) in
order to reach the specified in (28) precision.
First, investigate the precision in o. The idea can be easily represented for a two-phase

composite when the constant o = g for all k = 1,2,...,N. The iterative scheme (2) yields

go,(() = ¢ and (,0( ) = a0 + 1, where the terms ag, @, 81 are constants in o. The second
2 _

iteration can be schematically written as ¢,~ = o(a10 + B1) + ap. After substitution into (28),
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(1

one can see that one may neglect the coefficient ;. Therefore, it is sufficient to determine ¢,

upto O(1),as o — 0,

N
(29) go,il)(z):zz—:i/L FE (-2 dr+z=240(1), z€Gy.

m=1
For completeness, we have to note that the following singular integral is a bounded function in
GrULy
1 - 1 -
(30) — [ tEi(t—2) dt:Jk(z)——,/ t Eo(t—z) dt.
2mi Jp, 2mi Jp,

Here, equations (7) and (19) are used. The second approximation has the form

N
(31) <p§f)(z):ZQ_m'/ TEi(t1-2)dr+2+0(lo), z€ Gy
m=127rz Lo

Below, we omit the precision in o for shortness and keep track of the precision in f. Differ-

entiate equation (31)

d I d
(32) 790 @) =1+ ;mz_l On—-8m(2),
where the analytic in G, function is introduced
(33) gm(z):%'/meEl(t—z)dt, z € Gy.

The complex Green formulas hold for a function w(z,7) continuously differentiable in a

smooth closed domain G [23]

1 1 -
(34) Taada =y [ wa [Taade--5 [ wa
G 0z 21 8G G 0z 2i G

Introduce the averaged contrast parameter over inclusions

N
(35) (0) =) oxlGul.
k=1

Using (32) and (28) we obtain

enn=1 +2<Q> +Re %Zi\]:l Zﬁzl Qkahkm +O(|Q|3f7/2)’

(36)
enn=-Im23Y SN oromhim+0(lolf7?).
where
dgm 1 -
(37) him = ——(z2)dé1dér = —= [ tgm(t)dt
G dZ 2i L

by the second Green formula (34).



1) Consider the integral (33) when m # k. Introduce for shortness the designations E, ,,x =

E,(ap—ay)andT =t—a,,, Z = z—a,. We represent the function E1 (¢ — z) by the Taylor formula

El (t - Z) = El,mk - E2,mk (T - Z) + E3,mk (T - Z)2 - E4,mk (T - Z)3

%) Esmi(T=2) 4 0(f52).

Substitute (38) into (33)

1 _
(39) en(@ =5 [ TLE@+ LGOI
Ly,
where the following designations are introduced
f1(2) = Evuk + Exnk Z + E3 ui Z* + Eg i Z° + Es i Z°,

0 : :
f2(z,1) = —(Eamk + 2ZE3 ik +3Z°Eg i + 4E5 mk Z°)T

+(E3mk +3E4mk Z +6Es i Z*)T* = (Egmic + 4E5 i Z)T? + Es i T*.

Remark 1. The result (40) and others below are obtained due to symbolic computations with the
package Mathematica®. The corresponding symbolic computations can increase the precision
[4, Chapter 2].

Using the first Green formula (34) introduce the static complex moments of the domain G,

Sqm = ZLl./Lm 1(t—ay)ddt = me(Z—am)quldxz =
(41)

L), am)(t-an)idt (q=0.1,..)

and calculate

1 _
42) Som =~ rdt:/ dr1dvs = |Gol.
2! L Gm

The dimensionless complex static moments can be introduced as follows
_4_q

(43) 5O = smsy?

In particular, (43) yields s(()gg = 1. It follows from (41) and (43) that
(44) sgm=0(F1), s =0(1).
Continue to use the designations

(45) Eymi=Ep(am—ar), p=23,...; mk=12,...,N,
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including the case m = k. Here, it is assumed for shortness that E,(a,, —ay) = S, when a,,
coincides with ay. The lattice sums S, are introduced in [11]. Then, equation (39) can be written

in the form

gm(2) = f1(2)Som — (Eamk +2ZE3 i +3Z*Eg i +4Z3Es i) s1m
(46) +(E3mk +3E4mi Z +6Es i Z%) s2
~(Egmi +4E5mk Z)S3m + Es i Sam + O (f71?),

where the estimation (44) is used and Z = 7 — a;. Calculate

df—z’"(z) = (Exmk +2E3 i Z +3E4 mi Z* + 4Es 1ui Z°) som
47 ~2(E3 ik +3ZE4mi +6Z°Es i) S1m + 3(Eg i +4E5 i Z) Sm
—4Es e s3m + O (f3).

The differentiation operator decreases the precision on f1/2, since |z —ay| = O(f'/?). Using the

first Green formula (34), calculate the integral (37) with dj—;’ (z) given by the approximation (47)

him = (E2,mkSok + 2E3 miS1k + 3E4 micS2x + 4E5 i S3k ) Som
(48) ~2(E3mkSok + 3E4mis1x + 6E5 i S2k) S1m

+3(E4mkSok +4E5mis1%)S2m = 4Es miSoxs3m + O ().
Write (48) in the form

him = E2.mikSokSom + 2E3 mik (S16S0m — S1mSok)
(49) +3E4mk (526 Som + S2mS0k — 281mS1k)

+AES i [53%S0m — S0k S3m + 3(S1k52m — S2kS51m) ] + O (f4).

i1) Consider the integral (33) when m = k. It is equal to the integral (30)

(50) gk (2) =Jk(z)—2ll_/Lk?E0(t—z) dr.

We find for the considered periodic square unit cell

(51) Ej(t—z2) = m+384(t—2)* +7Ss(t—2)° + O (f7?).

Substitute (51) into (50) and use the first formula (34)

(52 60 = L@ e mso+ 353 [ (-2 dedea+ 0(),
k

The term (7 — z)® will be neglected due to the considered precision.

Calculate the integral from (52)

(53) /G [t —ayp — (z—ax)]* dé1dés = sop — 2514 (2 — a) + sox (2 — ax)>.
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Then, hy; defined by (37) can be calculated by the asymptotic formula

(54) hir = / J1(2) dé1dér + mst, +6Sa(saksox — s1,) + O (f4).
G

Therefore, the values Ay, can be found by (48) and (54).

Introduce the value

N
(59 T=Y et [ s asde - ——Z it [ na
k=1 k

Applying Sochocki’s formulas to Ji(z) defined by (19) and substituting the result into (55) we

obtain
1 < T
(56) T=geei [ @[ Sar
dr ; k Lk Li T—1
We now proceed to calculate the double sum 1 ;{v | 2m=1 Ok Omhim using the asymptotic

formulas (49) and (54). It is convenient to split thlS sum into the following ones. Introduce the

double sums

(57) Z 0k0mGil|G | E2
km 1
and
1 1
(58) V() == Z 0k Om|G |Gl E3 mi (5| 1Gk|> = 501G l?)
km 1

using the designation (45) and the normalized static moments (43). Analogously introduce

V()= 3 ZN 1Qkale||Gm|E4mk><

> (1G5 + G ls) 216Gl s52)

and

60) (V(3)3:(%)Zg,m:1§k£;n|GkHG m|EsmkX
(164135 = 1Gu 3550 +3 (1Gk IG5\ s = Gl 1Glsys(h) |

Put

61) V=V(1)+V2)+V(3).

Then, equation (36) can be written in the form

g1 =1+2(0) +2Re (T +L+V)+0(lol* ),
(62)

g ==2Im (J+L+V)+0(lol* /Y.
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We again write formulas with the explicitly shown precision in 0. The asymptotic formula (62)
is a result of the second iteration in the contrast expansion. The value |G| can be considered as
the volume fraction of the component having the contrast parameter oy.

Recall that the periodicity cell Q has the unit area, which means normalizing the centers ay
and using the scaled to the unit periodicity cell for the Eisenstein functions. Hence, the terms
L, Vi, Vs and V5 are of orders O( £2), O(f>/%), O(f3) and O( f7/?), respectively. The term J
from (55) has the order O( f) except at some shapes when it is equal to zero. Therefore, one can

introduce the dimensionless cumulative factors

_ _ _Jt4
(63) Jo=f"T, Lo=f72L Wi=f TV
Then, (62) can be written up to O(|o|> f*) in the form

11 =1+2(0) +2Re [fj)+f2£o+f5/2 ((vm +f1/2%2+f%3)],
(64)

o2 ==2Im | £ o+ F> Lo+ (Vor + P Voo + Vi) .

In the case of circular inclusions Ji(z) = 0, see [5], and all the static moments s, vanishes
for ¢ > 1. Hence, the terms J and ‘V vanish.

In order to calculate the components €7, and g7 = &2 one can rotate the structure about the
angle 7 and apply the same method. Let the inclusion G be transformed into G after this
rotation. Then, (62) yields

£ =1+2(0) +2Re (T*+ L +V*)+O0(loP f*),
(65)

e =¢en=2Im (T + L +V*)+0(lo* f*),
where the values with the asterisk correspond to the values from (62). The expressions for €1,
in (64) and &7 in (65) have the opposite signs since after the rotation, the coordinate system

x10x, changes its orientation.
Let J be given by (56). Then,

N —

1 — T*
66 =— % o7 [ dF dr*=-7,
(66) g 4ﬂ;gk/ﬁ /L;r*—r* -

k

The relation (66) is established by the change of variables t* =i and 7* = it in the integral (66).

The next term is calculated below

1 N
(67) L=~ ) okonlGullGulE;(i(ax ~ar)) = 2(0)* - L.
m,k=1



12

One can check that the static moments (41) are transformed after rotation in the following

way
(68) szm =i%sgm (g=12,...).
The same relation (68) holds for the normalized static moments sg,)%*. Introduce the value
2 & 1 ,
® ® ® 0)x* Ey 0)= <
(69) Vi== ) okenlGullGulEs(a —ap) (51" Gkl =51, Gl ).
k,m=1

One can see that V" = —=V;. The same arguments yield V= =V, and (V3* = —Vs, hence,
Vi=-V.

Let I denote the unit tensor. The effective tensor can be calculated by (64) and (65) up to
O(loP %)

Re 5 —-Im 9

g, = (1+2<g>)1+2f( Im% —Re.

R -1 Re V, —Im YV,
(70) pr| ReLo TImLo s Redor —Im o
—Im .£0 2—Re LO —Im (V()l —Re (V()l
+2f3 Re (Voz —Im (V()z + 2f7/2 Re (V03 —Im (V03 '
—Im (Voz —Re (Voz —Im (V()3 —Re (V03

The value J defined by (56) can be considered as the sum of cumulative shape factors of
inclusions Gy. The value L defined by (58) represents the mutual locations of inclusions.
Therefore, £ can be considered as the cumulative location factor. The term “V defined by (58)-
(61) can be considered as the cumulative mixed location-shape factor. It consists of the terms of
orders O(f>/%), O(f?) and O(f7/?) which may vanish.

The formula (70) can be easily implemented. For real permittivity, one can find numerical

examples in [14] not accessible by FEM because of computational restrictions.

1.4. Two-phase composite. Consider a two-phase composite with the same contrast parameter
o = ok. Then, (o) becomes o f. Following [14] introduce the parameters 7', L', V’(j) and
V’ equal to I, L,V (j) and V, respectively, after the substitution o = 1 into (56)-(61). For

instance,

N
, 1
(71) L'== > |GUIGnlEz -
n'k,mzl
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In the considered case, (70) becomes

Re j(')’ —Im j(')’
—Im jo’ —Re j(’)’

sL:(1+29f)I+2f92(

(72) +20° f? Rely —ImLy ), 20213/ Re V5 —ImVg,
—Im .£6 2—-Re LE) —Im (V(;] —Re (V(;l
02| BV -Im, ) eao2pe| RV —mV, ) |

The component &7, in the formula (91) from [14] contains an erroneous sign in  and V
corrected here in (72).
The first two terms of (72) deserve special attention. The following universal formulas hold

for any 2D two-phase dispersed composite
e, =(1+20f)1+0(0%),

(73) sl:(1+2gf)l+2fgz(

Re jo’ —Im jo’
—Im j(')’ —Re jo’

The first formula (73) can be independently justified by the Wiener bounds [24] written for

+0(f?).

two-phase composites

- _1y1-]
(74) [(fel'+(1-He ] <e. < fer+(1-fe.
Here, the phases have the permittivity €1 and &, the concentrations f and 1 — f, respectively.
We now consider the normalized positive permittivity when & = 1. Substitution of | = t—g and

€ = 1 into (74) yields the lower and upper bounds coinciding up to O(o?).
The term from the second formula (73) can be determined by the sum

N

(75) VEDWE

k=1
where j; means the dimensionless shape factor of kth inclusion

| -
a | .

(76) Jk=77—
47Tf L L T—1t

One can see that j is not changed under a translation ¢ — 7 + a since

1 - a 1 -
7 i —Jjk(0)=— [ dt dr = dtarni=0.
an -0 = g [0 [ Lar= o [ aian

The integral (76) is not changed under a scaling ¢ — ct since f — c*f.
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We now proceed to consider a two-phase macroscopically isotropic dispersed composite. The
tensor €, = &1 is expressed through the scalar value g, called the effective permittivity. Due to
the properties of analytic functions, such a relation can take place for almost all o and f, if the

following conditions are fulfilled
(78) J =V, =0, L)=1.

In this case, (72) yields the ClaudiusMossotti approximation with the exactly written precision

in concentration and contrast parameter

+of
-of

We now end up analyzing the results obtained from the explicit scheme for arbitrary shapes of

(79) ge=1+20f+20°f*+ 0 (|0’ 1* )— +0(loP 1.

inclusions with real permittivity. These results will be developed for complex permittivity and

circular shape.

1.5. First iteration of the implicit scheme for a two-phase composite. In the present section,

we analyze the precision for the first iteration of implicit scheme

1 ( -
(80) o (2) - % vl e )(t)El(t—Z)dt = Dnrk 27 Jy, TE1(1=2)d1 +2.
zZ € Gk.
For simplicity, a two-phase composite is considered when o = g4 forall (k =1,2,...,N). We are

interested in the effective constant calculated up to O ( f3) for an arbitrary 0. We now demonstrate

that it is sufficient to determine ¢, )(z) up to O(f?).

Theorem 3. Any approximation go(p )(z) of implicit scheme (3) coincides with 90 (Z) up to

O(f?).
Proof. Equation (80) can be simplified up to O(f?) to equation
1) A0 -o% [ oD OE -tz z€G
Tl Lk

due to the boundness of the integral operator established in Theorem 1. Here, we use the
asymptotic formula E; (1 —z) = Ey(am —ai) + O(f'/?), as f — 0, for dispersed composites. It
is worth noting that the integral operator over L; increases the precision by the multiplier f.
The constant term E;(a,, —ay) produces a constant that does not impact the final result, hence
it can be discarded. Moreover, in order to find ¢ kl) (z) up to O(f?) it is sufficient instead of (81)

to solve equation

<1>()
(82) o) X / dt=z z€Gy.
i L, =2
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It is justified by means of the expansion
1
(83) Ei(t=2) = -—=7(t=2)=S4(1=2)"+O(f?).

The same arguments hold for an arbitrary iteration order p. More precisely, equation (3) can
be written up to O( £?) in the form

(84) W@t [ A OB G-z e
Tl L

This equation coincides with (81) which has the unique solution for |o| < 1 in the space H (Gy).
It is also proved that equations (81) and (82) have solutions coinciding up to O (f?).

This proves the theorem.

Introduce the operator bounded in the space H(Gy) [23]

1 h(t
(85) (Sih)(z) = —/ Qd[, heH(Gy).
21 Jp, t—2
Equation (82) has the unique solution in the space H(Gy) for |o| < 1 [3]. It can be represented

by the absolutely convergent in o series [5, Chapter 2]
(86) oy () =2+ ) 0'Sfz=z+00,"(2), z€GrULy,
=1

where S,fz denotes the consequent application £ times of the operator S with the initial function
h(z) =z.
Two components of the normalized effective permittivity tensor €, are calculated. Calculating

the derivative d%go,({l) (z)we obtain the formulas valid up to O( f?)

. dsf .
11 =1+20f +2Re X2, o' X, [, T (&1 +id2) déidé,

(87)

o dSiz :
enn=-2Im 332, o' 3L Gr T (&1 +i8) dé1dés.

The solution of equation (82) is represented in terms of the series (86) in 0. An analogous
representation holds for the solution of equation (81). Such a series yields the asymptotic formula
(87) for effective constants up to O(f?). This confirm the precision up to O(f?) for go]({l)(z)
chosen a priori at the beginning.

The integral equations (81) and (82) can be considered as a method to determine the complex
potentials gol(cl)(z) in inclusions. The complex potential ¢(z) in the host can be calculated.
Analysis of this method yields the series (87) in p, i.e., shows the structure of approximation

and its precision. The formula (87) cannot be considered as a closed form expression until the
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infinite set of compositions of integral operators S,fz is not constructively found. One can apply
another numerical method, FEM, to determine the local field in a composite with one inclusion
G . But any method yields at most the term 1+ 20 f plus the term of order O (f) symbolically or
numerically equivalent to the double sum 3,2, Zivzl from (87) and does not concern the higher
order term O ( f?).

1.6. Maxwell’s self-consistent approach. In the present Section, we outline Maxwell’s self-
consistent approach [8]

Consider one inclusion G of permittivity €1 embedded in the host material of permittivity
. It is assumed that the permittivity is real and the boundary L; = dG is a piece-wise simple

Lyapunov curve. The perfect contact between the components is expressed by equations

0 0
(88) u(t) = uy (1), 3—ﬁ<r> :81£<t>, tel,

where the functions u;(z) and u(z) satisfy Laplace’s equation in the domains G; and
G = @\(G 1 U Ly). Moreover, the functions are continuously differentiable in the closures of

considered domains, and the function u(z) has a singularity at infinity

(89) u(z) ~xy, asz— oo.

This singularity corresponds to the external potential written in the complex form
(90) uer(7) =Re z.

In the considered case of a two-phase composite, we have one dimensionless scalar contrast
parameter
E1— 1

I Sty
O T e+l

The considered problem is reduced to the scalar R-linear problem

(92) (1) =¢1(t)—op1(t), teLy,

where the functions ¢(z) and ¢ (z) are analytic in the domains G and G 1, respectively. Moreover,
these functions are continuously differentiable in the closures of considered domains, and the

function ¢(z) has a pole at infinity
(93) ¢0(z) ~z, asz— oo.

Apply the Cauchy-type operator for L to the boundary condition (92). We obtain the integral
equation equivalent to (81) in the case 6; =0

ei(1)
-z

dt=z, z€G;.

(94) 1(2) - % /L
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Application of the Cauchy-type operator (92) for z € G yields

t
95) go(z)zi,/ ‘pl()dt+z, z€G.
2ri Jp, t—2

Let ¢1(z) be the solution to equation (94). Then, the complex potential ¢(z) is calculated by
(95).

One can see that equations (81) and (94) are the same. Therefore, Maxwell’s self-consistent
approach leads to the same equation, obtained by applying the first-order iteration in the implicit
scheme of Schwarz’s method discussed in Section 1.5. It was established that the solution to
equation (81) yields the formulas (87) valid up to O( f?). This justifies the validity of Maxwell’s
approach only in the first-order approximation in f. The claim often made in various works,
stating that the first-order approximation could be extended to higher orders in f without
accounting for higher-order terms <p§p ) (z) (p = 2), lacks any foundation.

Given its limitations, we continue to describe Maxwell’s approach along the lines of [8].
Expand the complex potential ¢(z) near infinity in the Laurent series and take the coefficient on
—%. The result value M| is called the dipole moment of the inclusion G [18, 1, 21]. It follows
from (95) that

(96) Mlzﬁ o1 (n)dt.
1 L

Considering the single inclusion G in the complex plane by the above method, we introduce

the dipole moments of G and estimate it using (86)

97) Mk:% LkMdr:gl(jT—k'+m;, k=1,2,....n,
where m/ = 29—; /Lk &y (1)dt is of order O (02 f). Itis assumed that n = n(Ry) inclusions lie in the
disk |z| < Rp.

Let the disk |z| < Ry be occupied by a material of the real permittivity £, and embedded
in a medium with normalized unit permittivity. This problem is a particular case of the above

problem (88)-(89) and can be written in the form

ou oU
(98) U =U1(0),  5(0) =ees (1), Il =R,

where the functions U;(z) and U(z) satisfy Laplace’s equation in the domains |z| < Ry and
|z| > Ry. The considered functions are continuously differentiable in the closures of considered

domains, and the function U(z) has the same singularity at infinity as u(z)

(99) U(z) ~x1, asz— oo.
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The problem (98)-(99) is reduced to the R-linear problem

(100) D(t) =D (t) — 0.P1(2), |t| = Ro,
where
g.—1
101 = .
(10D Q g, +1

The functions ®(z) and ®;(z) are analytic in the domains |z| < Ry and |z| > Ry, respectively.
Moreover, these functions are continuously differentiable in the closures of considered domains,

and the function ®(z) has a pole at infinity
(102) ®d(z) ~z, asz— oo.
The problem (100)-(102) has the following solution up to an additive arbitrary constant

R2
(103) CIJ(z)zz—QZ 0 ®(2) =z

Suppose that n inclusions G (k = 1,2,...,n) are located inside the large disk |z| < Ry. Let the
effective permittivity of the homogenized large disk |z| < Ry be equal to the scalar &,. The dipole
moment of ®(z) equals geR(z). Following Maxwell, we equate the sum of the dipole moments of

G to the total dipole moment of the homogenized material of the large disk

n n Gk ,
(104) QeR8:ZMkEQZ|7T—|+nm,
k=1 k=1

where m’ = % =1 m).. Taking into account (101) consider (104) as an equation on &,. Its

solution yields the effective permittivity of the disk |z| < Ro
L _ymn )2
1+R;? Xy Mi B 1+ 7R 2i=11Grl+nm'R;

-2 yn - 0 \n rp-2"
1—R0 k:le 1_7T_R(%Zk:1|Gk|+nm RO

(105) ge(n) =

It is assumed that £, (n) tends to the effective permittivity of composite &,, as n — co & Ry — oo.

In particular, it is assumed that the concentration is properly defined

n

(106) f= 1imZ”|G’;|.

10
noeiD TRg

Bear in mind that the homogenized medium is initially assumed macroscopically isotropic.

Remark 2. The existence of the concentration, the limit (106), does not guarantee that a
composite is homogenized, i.e., there exists the limit €, = lim,_,« &.(n) even in the second-
order approximation O(f?) [10]. This implies that any universal formula for . holds only

up to O(f?) except at neutral inclusions. The devil is in the details, in the term of order f>.
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This mathematical curiosity arises in self-consistency. The concept becomes clear through the
analysis of two half-planes x1 > 0 and x| < 0 comprised of square and hexagonal arrays of disks

having the same concentration. These arrays maintain the same concentration but have different

effective permittivity.
Consider the case when |G| = |G2| =... = |Gy| and m| = m}, = ... = m);. Then, (105) yields
l+of +m' fr|Gy|™!
(107) go = FQIAMIHICGI L g2

Cl-of —m'fr|Gy|!
One can check that the term m’ f7|G|~! is of order O(0*f).
Let equal disks of radius » be embedded in the host materials. Using the relation ¢ = ’72 on the

circle |t| = r rewrite equation (94)

2mi

rZ
0 S"‘(T)
(108) or(z) -2 / di=z |z <r
[t|=r

By the symmetry principle the function ¢ (%) is analytically continued into the domain |z| > r.

We calculate the integral from (108) and obtain
(109) ¢1(z) =0p1(0)+z, 2] <r.

Determine ¢(z) by (92) up to an additive constant

2
(110) 0(2) :z—%, 12| > 7.

Therefore, the dipole for the disk M| = or* and m’; = 0 by (97). Then, (107) becomes the famous
Maxwell-Garnett (Clausius-Mossotti, Maxwell, Lorenz, Lorentz, Maxwell-Garnett) approxima-
tion

_I+fo
"1 fo
The precision is increased here according to [13] established for equal disks.

(111) +0(f).

Some comments are needed to explain the formula (111). For any positive f, it is easy to
present such a location of perfectly conducting disks (o = 1) that a collection Cy; will contain
two percolation chains along the axes. Hence, the averaged permittivity of Cy; will be infinite.
It cannot be reached by the approximation (111). Conversely, any macroscopically isotropic
composite with circular inclusions satisfies (111) [13]. This assertion does not contradict the
previous observation since the formula (111) is asymptotic with a positive infinitesimally small
number f. In this sense, the asymptotic formula (111) is universal and holds for sufficiently
small f.
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2 2

4+ 22—, where for definiteness 0 < o < 1.
(1+ > (1-a)?

The semi-axes of the ellipse are equal to (1 + @) and (1 — ). The ellipse equation can be written

Let the ellipse L be defined by equation

in the complex form

1+a? 1-a?
(112) =2 2V 2 4a, zel,
2a 2a

where the square root is defined on the complex plane without the slit (—2+/a,2+va) on the

x1-axis. Moreover, the square root tends to +co as z = x; > 0 tends to infinity along the real axis.
Consider the R-linear problem (92)-(93). One can check that the functions

1 1+a? 1-a?
(113) 1(2) = ——, p(2) = z{1-0 +o Vz2—da
1-oa 1 -oa 2a 2a
satisfy the problem (92)-(93). The dipole moment of the ellipse has the form
1= 2
(114) My =o—2
1-oa

Consider equal non-overlapping elliptic inclusions G obtained from G by translation and
rotation by an angle ;. The complex potentials for the inclusion G can be obtained from (113)
by the transformation z — zexp(ify) + ax. The dipole moment has the form

1-a? )
(115) My = o———[1+exp(ify) o] .
1-02a?
Let inclination angle 6 be considered a random variable uniformly distributed on (0, 7). Then,

the mathematical expectation E[6] = 0 and

n

1 G 1
(116) im + 3 g, = 291 ,
n—eo 1y £ n 1-0%a?

since the area of ellipse holds |G| = 7(1 — @?). Using this formula, we obtain from (105) and
(106)

1+ Q]; 2
(117) se:%+0(f)—l+l f S +0(f2).
l_l_gzaz

2. EFFECTIVE PERMITTIVITY TENSOR FOR MULTI-PHASE COMPOSITES

Above in this note, we derived formulas for real-valued permittivity. We now begin to explore
complex values of the normalized permittivity of components &;. Consequently, the contrast
parameter oy also becomes complex. Building upon the foundations laid out, we extend these
formulas to the complex domain through analytic continuation in terms of g;. To ensure the

validity of this continuation, it is imperative that we establish a groundwork for understanding
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the interplay between complex permittivity and its matrix representation. This will be our main
goal as we move forward.

The effective permittivity tensor with complex components will be denoted in the same way
11 €12
(118) £, = :
21 &2
where 17 = &71.

Introduce the averaged value of a function F(z) over the unit periodicity cell Q
(119) (F(2)) = / F(x1 +ix;) dxjdx;.
o

Here, the real plane coordinates x = (xy,x;) are identified with the complex coordinate z =

x1 +1x3. The complex effective permittivity tensor can be defined through the following relation
(120) (e(2)Vu(z)) = £.(Vu(z)),

where £(z) = 1 in G and &(z) = & in G. The value Vu,,, := (Vu(z)) determines the complex
external flux applied to the unit periodicity cell Q. It follows from the theory of homogenization
[2, 6] that in order to determine the tensor &, it is sufficient to find two local fields Vu(z) for

two external fluxes

1 0
(121) Vuext[l] = ( 0 ) and Vuex,[z] = ( 1 )
Let us fix the first external flux from (121). Consider the vector equality with complex
components
N
(122) (Vu):/Vu dxldx2+Z/ Vugdxdxs.
G k=10

Transform the double integrals by the divergence theorem associated to the Ostrogradsky-Gauss

theorem of real vector analysis

N
(123) /Vu dxldxzz/ unds+2/ (up —u)n ds,
G a0 1 /Gy

where n denotes the outward normal unit vector to the boundary 0G = 900 — Zlk\':l 0Gy. It follows
from the quasi-periodicity conditions that the integrals over G vanish. The integral over 0Q
is calculated by the jumps of u per unit periodicity cell Q, see for details Chapter 3 and Remark
5 in Section 2.2.2 of [5]. Ultimately, we have

(124) (Vu(z)) = ( (1) ) and &, (Vu(z)) = ( el )

€21
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We now proceed to calculate the left part of (120) which has to be equal to the second vector
of (124)

€11 u
(125) =/Vu dxdx, + E ak/ Vuidxdx,.
G k=1 Y0k

€21

Greens formula

oF 0G
(126) /(———)dxlde:/ G dx| + F dx».
s\0x1  Oxa as
The components of (125) can be written in the form
N
(127) 8112/ MdX2+Z(8k—l)/ U d.XQ,
N
(128) —321:/ udx1+Z(sk—1)/ ug dx;.
6Q k:1 aGk

Using the jump conditions per unit periodicity cell Q we calculate the integrals over 0Q

(129) ./aQudXIZ_[; u(x1+%)—u(x1—%)]dx1:0,
(1 1
(130) /udx2:/ [u(—+DC2)—u(——+DC2)]d)Q=1.
80 _ 2 2

1
2

Again, applying Greens formula for G; we obtain

N
e 1
(131) = + > (k1) | Vugdrid.
€21 0] G
We have the representation
ou;, _iﬁu;(
1 0xy oxo
(132) Yi(z) = 5 (I + @) . 2€Gy,
2 ouy,  .ouy
-1
0x1 Oxo
which can be written in the equivalent form
au o
oxy oxy 2 1+& g’
(133) = 5 Lo (@), zeGy.
oy ow | NHEP\ -l 1+eg

8x1 —1 8)62
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Then, the gradient Vuy can be written in terms of the complex potentials

ou, .oul .

axlf +1 6fo 5 Re 1 +1iRe ¢y
(134) Vi = =—

Ouy, .0uy €kt .

7% T, —Im g —ilm o

where ¥ 1x(z) and Yo, (z) are coordinate of the vector function ¥ (z).
Substitute (134) into (131)

1] 1 N /
135 = 2
o (2L

where the scalar values o, can be found [12]. Therefore, in order to calculate (135) we have to

Re l//]k +iRe 'J’Zk

—Im 1 —ilm Yok

) dxdx,,

find the vector function dizgo 1 (2) =¥ (2) = W1k (2), %2k (z)) T satisfying the considered boundary

value problem.

3. INTEGRAL EQUATIONS AND THEIR APPROXIMATE SOLUTION FOR MULTI-PHASE COMPOSITES

The scalar R-linear problem was reduced to the system of scalar integral equations. Using
the same arguments, we reduce the vector R-linear problem to the vector system of integral

equations up to an arbitrary additive constant vector

5 — Z
136 =) — Ei(t-z)d ,2€Gr (k=12,...,N).
(136)  @(2) ;M/Lmﬂmqo,At) 1(1=2) r+(0 2€ Gy ( )

In the scalar case, the contrast approximations were defined by the constant oo =

maxk=12. .~ |ok|- In the vector-matrix case, introduce the spectral norm
en—1
137 = max .
( ) ©o m=1,2,..,N|&Ey + 1

Following Section 1.3, we find an approximate solution to equations (136) by two iterations.

Similar to (29) the first-order term has the form

(138) ¢, (2) = ( f) +0(1), z€Gy.

The second order approximation is found similar to (31)

t
0

N

) ePe=y 0

m=1

+0(0}), z€Gy.

Z
Ei(t—z7)dr+
1(t—2) (O
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Below, we omit the precision in og for shortness and keep track of the precision in f.

Differentiate equation (139)

e 2) 1, B !
14 = m tEx(t—2)d
(140) (z) = k(z) (O)+mZ=12m/Lm(O)t 2(t—z2) dt,
Using the relation

1 1 lem|* -1
141 =
(14 ﬁm(o) u+smP( %,

write (140) in the form

2
e lem|” =1 | dgm

142 =
(142) (@)= ( ) Z|1+8m|2( X )dz()
where g,,(z) has the form (33), hence,

dg, _
(143) g @)=5 /th(t—z)dt.

L

Write the relation (142) by coordinates

v () =1+ LEN_ el dn o)

m=1 |1+g,|> dz

(144)

2 2ey,  dgm
vy () = 130 e B (r), ze G

Taking into account the identity

em—1 _lem|*—1+2ig),

145 m = =
(145) @ Em+1 |1+ &2
find the vector
(146) Re w(z) +1iRe ;{/(2) 1 N 1 ZN: Re dj—z’”
—Im w(z) ilm lp(z) 0 ot Om -1 df—;" '

Introduce the averaged scalar contrast parameter over inclusions similar to the case of real-valued

permittivity (35)

N
(147) (@) := > 0klGxl.
k=1
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Substitute (146) into (135)

E11 _ 1
( o, )—(1+2<Q>)( 0 )

2 N
+= Zk m 1Qka /Gk

(148)
Re hkm

—Im hkm

) dxidxy +0(03 f7?),

where hy,, has the form (37) and g is given by (137). The precision of (148) is taken as the
precision of (36) due to the same application of Schwarz’s scheme. One can see that the same
values hy,, are needed for the calculation of the permittivity tensor in the case of real-valued
permittivity by (36) and of complex permittivity by (148). The formulas (36) and (148) are
similar, and (148) has to include (36) as a particular case. The difference between (36) and (148)
consists in the assumption on the contrast parameters o; which have to be real in (36) and can
be complex in (148).

This observation allows us to state the following assertion
Rule R — C:

Any formula for the real-valued permittivity of components is transformed into

a formula for the complex permittivity.

This Rule is loosely stated and needs explanations since a formula for the real-valued permit-
tivity must first be written in the corresponding form to be extended to the complex permittivity.
The formulas from [5, 14] and others were obtained using the classic scalar complex potentials.

For instance, the formula (36) for the real-valued permittivity was written in the form

(149) e11—iga = 1420y +2 30 BN IQka/Gk him dx1dxz + 0 (03 f7/%).

Hence, two real equations (36) are written in the form of one complex equation. In order to
extend (149) to the complex permittivity, first, one has to write (149) in the vector form (148).
After this, one can extend the real-valued vector to the complex-valued vector, assuming that
the contrast parameters ox become complex.

Now, we take the second external flux (121). Analogously the previous transformations, we
arrive at the formula

£ 1 al Re ¥ +iRe Yok
(150) ( ):( )+2ng/
-£&12 0 = Gk

_ dxydxy,
—Im yry —ilm yrop
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where 1, and oy differ from the values of (135) calculated for the first flux. Two vector

equations (135) and (148) can be written in the form

1 0
(811 812):( )+2Zg:1gkx

&1 &2 01
(151)
Re Y11 +iRe Yor1p  Im i o) +1lm yog o
—Im i —iIm o) Reyigpz) +iRe Yoi(2

Jou

where the subscripts [1] and [2] indicate the solutions constructed by the corresponding external
fields (121).

The formula (70) was derived for the real-valued permittivity. Using Rule R — C one can

) dxdx,,

apply this formula to the complex permittivity

Re 5o -Im 9

&, = (1+2<Q>)I+2f( Im% —Re.

+2f2 Re Ly -Im Ly N 2f5/2 Re Vy1 —Im Vy

(152) —Im ,£0 2—Re ,£0 —Im (V()l —Re (V01
+2f3 Re (Voz —Im (Voz + 2f7/2 Re (V03 —Im (V03

—Im (V()z —Re (Voz —Im (V03 —Re (V()g

+0(03 %),
where the values from (152) are calculated by the same formulas (63) and (56)-(61).

The first invariant of the tensor &, takes the form

1
(153) 5 (e +e2) = 1+2(0) +2(0)* +0(0}).

One can see that it does not depend on the location of inclusions in the considered approximation.
The normalized longitudinal permittivity of the considered fibrous composite is calculated by

the mean value, see formula (3.142) from [25]

N
(154) gy =1-f+> ecfi
k=1
where f; stands for the concentration of the phase of permittivity &.
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