
CA23125 - The mETamaterial foRmalism approach to recognize cAncer (TETRA)
Working Groups 2, 2026

MATHEMATICAL MODELLING OF HIGHLY DISORDERED ANISOTROPIC
STRUCTURES.

PART 2.1. NEW THEORIES ENABLING HOMOGENIZATION OF DISODERED
METAMATERIALS.

VLADIMIR MITYUSHEV

Abstract

We develop a new computationally effective method based on the structural sums (generalized
Eisenstein-Rayleigh sums) in the framework of homogenization theory. The method can be
applied to various multi-phase dispersed metamaterials. It can be considered as a fast com-
putational method alternative to high-order spatial correlation functions. The method will be
applied to detect a difference in statistical features between normal (health) and anomalous (ill)
types of cells. The method is considered as the Schwarz alternating algorithm. Its various imple-
mentations are applied to determine the local fields in 2D dispersed composites. Following the
homogenization theory, we consider a doubly periodic representative cell 𝑄 with an arbitrary
number of inclusions per cell. The method of complex potentials and constructive results on the
R-linear problem are systematically applied.

1. On Schwarz’s Method in the constructive homogenization theory

The theory of composites includes a broad spectrum of applied mathematics, in particular,
asymptotic homogenization theory and both analytical and numerical computation of effective
material properties. Homogenization theory leads to the statement of the periodic boundary
value problem. It provides a rationale for employing local fields derived from the boundary
value problem to determine the effective constants. The periodic statement yields the proper
definition of effective constants through the integrals over the periodicity cell from the local
fields [7, 35]. A composite with one inclusion per unit periodicity cell 𝑄 is called a regular
periodic composite. A composite with 𝑁 > 1 inclusions per unit periodicity cell is called a
periodic composite. In the homogenization theory of random composites [35, 27, 75] based
on the theory of measure, the periodicity is replaced by the spatial stationary process when
the statistical properties of the medium are invariant under translations. In this case, a unit
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periodicity cell 𝑄 exists, and it represents the considered random composite [26, Chapter 3].
This is the postulate of the homogenization theory of random composites. Therefore, the proper
way to determine effective constants of a random composite is to consider a periodized part of the
structure [71, 72] with increasing 𝑁 , keeping the distribution of location up to the stabilization
of the computed constants. In this part, we show that the violation of periodization can lead to
methodologically misleading results.

The homogenization theory is associated with the concepts of existence and uniqueness of
effective constants. The estimation of the effective constants is the next problem of homoge-
nization. In this part, we analyze approximate and exact analytical formulas. We call this area
the constructive theory of composites, emphasizing the derivation of formulas for effective
constants. Leave aside now other ways to achieve the same goal, namely, the theory of bounds
[13, 46], pure numerical simulations, and the theory of Representative Volume Element (RVE).

Some mathematical theories and algorithms were first proposed due to physical intuition. The
way from a physical idea to a rigorous mathematical method may be extended and contradictory.
In this part, we discuss the reasonable approximations for effective permittivity (conductivity,
permeability, elastic constants, etc.) Often, new formulas derived using intuition are reduced to
the classical lower-order approximations with redundant higher-order tails; some formulas are
correct, and some are wrong. The absence of precision analysis and numerical investigations of
conditionally convergent series explains the main theoretical discrepancy.

In the present note, we determine the complex effective permittivity tensor for 2D (two-
dimensional) composites [55]

(1) 𝜀𝜀𝜀⊥ =

(
𝜀11 𝜀12

𝜀21 𝜀22

)
.

In the case of 3D fibrous composites, the effective permittivity tensor is decomposed onto the
transversal part perpendicular to fibers 𝜀𝜀𝜀⊥ and the longitudinal permittivity 𝜀𝜀𝜀 | | parallel to fibers.

One of the seemingly natural and straightforward ways to compute 𝜀𝜀𝜀⊥ is based on the
determination of the local fields around a finite collection of 𝑀 inclusions in the space with
the further suggestion that 𝑀 tends to infinity. It is not equivalent to the limit 𝑁 → ∞ in the
extending periodicity cell since the obtained series converges conditionally. Therefore, the order
of its summation can lead to any result. This is the crucial reason for diverse models to determine
𝜀𝜀𝜀⊥ and announce a new model (formula) obtained as a partial sum of absolutely divergent series.
First, this problem of the conditionally convergent series was resolved by Rayleigh [68] in 1892.
Rayleigh did not present any explanation and just indicated the proper method of summation
(Eisenstein’s approach proposed in 1848 [78]). Some historical notes can be found in [53].
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We come back to the permittivity (1) in Section 3 after introduction to Schwarz’s method. In
1869-1870, Hermann Schwarz proposed the alternating method for solving the Dirichlet problem
for the union of two overlapping domains. S.G. Mikhlin [45] extended the classical alternating
method to boundary value problems for a multiply connected domain with holes/inclusions. The
method is based on the decomposition of the considered domain with complex geometry onto
simply connected domains and subsequent estimations of the field in a simply connected domain
induced by fields in other domains. Though the main idea by Schwarz presents in Mikhlin’s
approach, the case of non-overlapping inclusions essentially differs from the original method
for overlapping domains and decomposition methods [74, 25, 32]. The generalized alternating
method of Schwarz can be presented as an infinite sequence of all the mutual interactions
between the inclusions in the considered composite. In this book, we use the term Schwarz’s
method for shortness but only mean non-overlapping inclusions considered by Mikhlin.

In 1949, Mikhlin [45] proved the convergence of Schwarz’s method for a doubly connected
domain. Schwarz’s method was independently applied to two circular inclusions in many works
without referencing the original method. For example, it is called the iterating analytic self-
maps of disks in [11]. The authors of [34] called Schwarz’s method and its implementation
by ”heterogenization technique.” The complete closed-form1 solution to the problem for two
circular holes was derived in [70].

Schwarz’s method was slightly modified in [60, 61] so that its convergence was established
for any multiply connected domain for Laplace’s and other equations. The sequential steps of
Schwarz’s method can be presented in symbolic form. This leads to analytical approximate
formulas for the local fields and for the effective constants of composites. The interactions
between circular (spherical) inclusions were written by Kelvin’s reflections on circles, and the
effective constants were obtained in terms of Eisenstein functions [61, 26, 21].

2. General Schwarz’s scheme

Integral equations in a Banach space corresponding to Schwarz’s method were derived in [45]
and modified in [60, 61]. Below, we present these equations in the general operator form on the
potentials 𝑢𝑘 in 𝐺𝑘 , omitting some mathematical details described in the next sections. Let 𝑢0

denote the given external potential. For simplicity, consider a two-phase dispersed composite
with non-overlapping inclusions 𝐺𝑘 of permittivity 𝜀1 embedded in the host of permittivity 𝜀. In
this note, up to Section 4, we will delve into Schwarz’s method, presenting its basic idea, taking

1Unfortunately, the terms ”closed-form” and ”exact” solutions have been incongruously applied in some works.
So, we are forced to stress that [70] contains a closed-form solution in the proper sense [4].
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for simplicity real constants 𝜀1 and 𝜀. Introduce the dimensionless contrast parameter

(2) 𝜚 =
𝜀1 − 𝜀

𝜀1 + 𝜀
,

which |𝜚 | ≤ 1 for 𝜀1 and 𝜀 changing from zero to +∞.
The potential 𝑢𝑘 is related to others 𝑢𝑚 by the linear operator equation [58]

(3) 𝑢𝑘 = 𝜚𝐹𝑘𝑢𝑘 + 𝜚
∑︁
𝑚≠𝑘

𝐹𝑚𝑢𝑚 +𝑢0, in 𝐺𝑘 , 𝑘 = 1,2, . . . , 𝑁,

where 𝐹𝑚𝑢𝑚 denotes the field in the domain 𝐺𝑘 induced by the inclusion 𝐺𝑚. The term 𝐹𝑘𝑢𝑘

produces the self-induced field. Equation (3) will be written explicitly in Section 5. The phys-
ical contrast parameter 𝜚 is a multiplier of the bounded operators 𝐹𝑚. The operators 𝐹𝑚 are
determined by the microstructure of the considered composite, which implicitly depends on the
concentration of inclusions 𝑓 . After undergoing a constructive homogenization procedure, the
explicit dependence on the variable 𝑓 can be represented.

Various explicit and implicit iterative schemes [25], including the splitting of the operators 𝐹𝑚,
can be applied to equation (3). For instance, the self-induced field can be included in determining
the field 𝑢𝑘 . This scheme can be expressed in terms of the inverse operator

(4) 𝑢𝑘 = 𝜚(𝐼 − 𝜚𝐹𝑘 )−1

[∑︁
𝑚≠𝑘

𝐹𝑚𝑢𝑚 +𝑢0

]
in 𝐺𝑘 , 𝑘 = 1,2, . . . , 𝑁,

where 𝐼 stands for the identity operator. The construction of the inverse operator is reduced to
a solution to the problem for one inclusion 𝐺𝑘 . In the present note, we develop an asymptotic
method in order to find the inverse operator in a constructive form.

The method of successive approximations for equation (3) leads to the contrast expansion

(5)
𝑢𝑘 = 𝑢0 + 𝜚

∑
𝑘1 𝐹𝑘1𝑢0 + 𝜚2 ∑

𝑘1,𝑘2 𝐹𝑘1𝐹𝑘2𝑢0 + 𝜚3 ∑
𝑘1,𝑘2 𝐹𝑘1𝐹𝑘2𝐹𝑘3𝑢0 + . . .

in 𝐺𝑘 ∪ 𝐿𝑘 ,

where 𝑘, 𝑘𝑠 = 1,2, . . . , 𝑁 for 𝑠 = 1,2, . . ..
After determining the local field, the effective constants can be found following the homoge-

nization theory [7]. In the case of dispersed composites, the effective constants can be calculated
by the averaged local field in inclusions [26, Chapter 3]. The local field can be found using
various numerical and analytical methods, for instance, by FEM [20, 39], by integral equations
[28, 45], by asymptotic and perturbation methods [5, 6, 19]. The effective properties can be esti-
mated by the Hashin-Shtrikman bounds and their generalizations [46, 13]. Contrast and cluster
expansions [46, 76, 26, 21] are applied to derive the macroscopic properties of composites.

We concentrate our attention on the asymptotic analysis of Schwarz’s method for dispersed
composites. This study yields a constructive method to derive analytical formulas for the effective
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Figure 1. Doubly periodic composite and its representative square cell 𝑄 (RVE).

constants with the exactly calculated precision orders [58, 51]. The 2D permittivity problem is
equivalent to conductivity and an anti-plane elastic problem. The elasticity problem requires
two contrast parameters [54] that complicate computations. The same scheme outlined by
equations (3)-(4) can be applied to 3D composites, including thermoelastic, piezoelectric, and
other physical phenomena [69, 26, 21, 3].

Schwarz’s method can be outlined as follows. First, we order the steps of the method by
the sequence {{0}, {𝑘1}, {𝑘1, 𝑘2}, . . . , {𝑘1, 𝑘2, . . . , 𝑘𝑠}, . . .}, where 𝑘𝑠 runs over the numbers of
inclusions 1,2, . . . , 𝑁 and 𝑠 = 0,1, . . .. The number 𝑠 is called the level of step. The zero level
potential𝑈 (0)

𝑘
in 𝐺𝑘 is equal to the external potential 𝑢0 = 𝑥1 for which E0 = (−1,0) is calculated

as the gradient E0 = −∇𝑢0. Let us fix an inclusion 𝐺𝑘1 and introduce the potential 𝑈𝑘1 induced
by 𝑈

(0)
𝑚 𝑚 = 1,2 . . . , 𝑁 . The induced terms 𝐹𝑚𝑈 (0)

𝑚 correspond to the first iteration in equations
(3). This first step has the level 𝑠 = 1 and includes 𝑁 elements 𝑈𝑘1 (𝑘1 = 1,2 . . . , 𝑁). The second
step of level 𝑠 = 2 includes 𝑁2 elements 𝑈𝑘1,𝑘2 (𝑘1, 𝑘2 = 1,2 . . . , 𝑁). The element 𝑈𝑘1,𝑘2 in the
inclusion 𝐺𝑘1 goes back to the impact of the inclusion 𝐺𝑘2 onto 𝐺𝑘1 , i.e., first, the impact of the
zero potential 𝑈 (0)

𝑘1
in 𝐺𝑘1 to the potential 𝑈𝑘2 in 𝐺𝑘2 and next the impact of 𝑈𝑘2 to the field in

𝐺𝑘1 . It is worth noting that the elements 𝑈𝑘1,𝑘2 and 𝑈𝑘2,𝑘1 do not coincide since they are defined
in different inclusions. For example, the genesis of 𝑈1,3,2,3,4 is demonstrated in Figure 2 for a
square periodicity cell displayed in Figure 1.
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Figure 2. The element 𝑈1,3,2,3,4 in 𝐺1 emerges due to the sequence of impacts
of the zero field in 𝐺4 to 𝐺3, the resulting field in 𝐺3 to 𝐺2, the resulting field in
𝐺2 to 𝐺3 and finally the resulting field in 𝐺3 to 𝐺1.

The potential in 𝐺𝑘 is represented in the form of series equivalent to (5) for |𝜚 | < 1 up to an
additive constant 𝑐𝑘

(6)
𝑢𝑘 (x) = 𝑢0(x) +

∑∞
𝑠=1 𝜚

𝑠
∑

𝑘1,𝑘2,...,𝑘𝑠 [𝑈𝑘1,𝑘2,...,𝑘𝑠 (x) −𝑈𝑘1,𝑘2,...,𝑘𝑠 (w)] + 𝑐𝑘 ,

x ∈ 𝐺𝑘 ∪ 𝐿𝑘 (𝑘 = 1,2, . . . , 𝑁),

where w is a fixed point outside of ∪𝑁
𝑘
(𝐺𝑘 ∪ 𝐿𝑘 ). The additional constant term 𝑈𝑘1,𝑘2,...,𝑘𝑠 (w)

is introduced in order to obtain the uniformly convergent series for a high dielectric constant of
inclusions (𝜚 = 1) and for insulating inclusions (𝜚 = −1). The order of summation by levels is
important for |𝜚 | = 1 because the series (6) may be conditionally convergent [61, 26].

In the case of circular inclusions, the above scheme coincides with the image method based on
the Kelvin transform. The elements of series (6) are constructed by the classic Schottky group of
inversions on circles 𝐿𝑘 [49]. The series (6) becomes the 𝜃2-Poincaré series which determines
an authomorphic function [47]. Computationally effective methods for the Poincaré series were
developed in [56] and other works.

The constructive applications of contrast expansion (5) in the theory of composites are
usually accompanied by a comment on sufficiently small |𝜚 |. Such an assumption for dispersed
composites is redundant since the series (5) converges absolutely in the unit disk |𝜚 | < 1 of the
complex plane [60, 26, 58].
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Schwarz’s method is reduced to a system of integral equations whose kernels are Green’s func-
tions of separate inclusions occupying simply connected domains [58]. The similar Lippmann-
Schwinger type equation [63] is stated over the total boundary of inclusions. Both methods
ultimately lead to the same series (5). The methodology outlined in [63] is based on absolute
convergence, i.e., on the Neumann series estimated by the norm of the integral operator. It turns
out that the uniform convergence of Schwarz’s method gives more general results than absolute
convergence. It requires subtle construction of the conditionally convergent series (6) dependent
on the order of summation.

We now define the class of dispersed composite First, every domain 𝐺𝑘 or its convex hull is
assumed to be a bounded convex set. Fix a domain 𝐺𝑘 and describe its properties. Its boundary,
closed curve 𝐿𝑘 , can be locally parametrized by a 𝐶 (1,𝛼) function except at a finite set of points
where one-sided derivatives along 𝐿𝑘 exist but can be different. Let 𝑎𝑘 denote the gravitational
center of the domain 𝐺𝑘 . It will be convenient to consider 𝑎𝑘 as a complex number

(7) 𝑎𝑘 =
1

|𝐺𝑘 |

∫
𝐺𝑘

𝑧 d𝑥1d𝑥2 (𝑧 = 𝑥1 + i𝑥2).

Introduce the generalized radius of 𝐺𝑘 as 𝑟𝑘 = sup𝑧∈𝐿𝑘
|𝑧− 𝑎𝑘 |. Hereafter, the distance |𝑧−𝑤 |

is considered in the plane torus topology. It is assumed that the closed domains (𝐺𝑘 ∪ 𝐿𝑘 ) for
𝑘 = 1,2, . . . , 𝑁 are mutually disjoint and

(8) 𝑟𝑘 + 𝑟𝑚 < |𝑎𝑘 − 𝑎𝑚 |, for 𝑘 ≠ 𝑚 (𝑘,𝑚 = 1,2, . . . , 𝑁).

We call such a set {𝐺1,𝐺2, . . . ,𝐺𝑁 } by inclusions in a dispersed composite. The exterior domain
𝐺 to the inclusions is called the host or matrix of the dispersed composite.

Introduce the maximum generalized radius 𝑟 = max𝑚=1,2,...,𝑁 𝑟𝑚. It will be convenient to
estimate the effective constants using the concentration of inclusions

(9) 𝑓 =

𝑁∑︁
𝑘=1

|𝐺𝑘 |,

where |𝐺𝑘 | stands for the area of the domain 𝐺𝑘 in the periodicity cell of the normalized unit
area |𝑄 | = 1. It follows from inequality |𝐺𝑘 | ≤ 𝜋𝑟2

𝑘
that

(10) |𝐺𝑘 | =𝑂 (𝑟2), as 𝑟 → 0 ⇔ 𝑁 |𝐺𝑘 | =𝑂 ( 𝑓 ), as 𝑓 → 0.

Here, 𝑁 is considered as a constant; the value |𝐺𝑘 | is of order 𝑂
(
𝜋( 𝑟𝑘

𝑟
)2𝑟2) . Therefore, only

two geometrical equivalent infinitesimal parameters, 𝑟2 and 𝑓 , can be considered in asymptotic
formulas.

An important consequence of Schwarz’s method is the decomposition theorem, which can be
loosely formulated as follows
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Theorem 1 (Decomposition theorem). The effective properties tensor 𝜀𝜀𝜀⊥ can be represented
as a linear combination of the pure geometrical parameters of inclusions with the coefficients
depending on the local physical constants.

Consider for simplicity the formulas (6) for the local field in the inclusion 𝐺𝑘 . The tensor 𝜀𝜀𝜀⊥
can be calculated by averaging the local field in inclusions per a representative volume element

(11) 𝜀𝜀𝜀⊥ =

∞∑︁
𝑠=1

𝜚𝑠
∑︁

𝑘,𝑘1,𝑘2,...,𝑘𝑠

c𝑘,𝑘1,𝑘2,...,𝑘𝑠 ,

where the tensors c𝑘,𝑘1,𝑘2,...,𝑘𝑠 describe the mutual interactions between inclusions and depend
only on their concentration, location, and shapes; 𝜚𝑠 are the coefficients expressed only on the
physical constants. Equation (11) for multi-phase composites become

(12) 𝜀𝜀𝜀⊥ =

∞∑︁
𝑠=1

∑︁
𝑘,𝑘1,𝑘2,...,𝑘𝑠

𝜚𝑘 𝜚𝑘1 . . . 𝜚𝑘𝑠c𝑘,𝑘1,𝑘2,...,𝑘𝑠 ,

where 𝜚𝑘 stands for the contrast parameter of the materials occupied 𝐺𝑘 and 𝐺.
The decomposition (12) emerges due to the contrast expansion of 𝜀𝜀𝜀⊥. Its first constructive

form was derived in [52, Section 4.2].

3. Mathematical modeling and determination of effective properties

The most popular analytical formulas for the effective permittivity of dispersed composites
are the Maxwell-Garnett [42] and Brugemann [10] approximations, see equations (13). We now
postpone formulas associated with the famous neutral Hashin-Shtrikman assemblage [12, 46]
for coated composites and discuss analytical formulas for two-phase composites based on the
self-consistent method (SCM). A typical modern review of various analytical formulas for the
effective properties of composites, including elastic media, begins with a discussion of these
formulas and their numerous extensions. Lots of items are laid out on the counter and offered
for usage. Some contradict others; some violate the Hashin-Shtrikman bounds; some disturb
the symmetry of tensors. However, everything becomes allowed if the magic word ”model” is
used. There is no theoretical justification when creating a new model, giving way to empirical
reasons. Experiments might confirm the model.

We will not discuss a rich assortment of models and narrow our focus to the specific two-phase
2D macroscopically isotropic composites in order to derive precision of various modifications
of SCM such as effective medium approximation, mean-field, Mori-Tanaka methods, etc. It will
be shown that some popular modifications of SCM are covered by the first-order approximation
of Schwarz’s method. This investigation explains plenty of illusory different formulas which
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are reduced to the same Maxwell-Garnett type estimation for dilute composites. It will be
demonstrated that some higher-order extensions of SCM violate homogenization principles and
lead to methodologically misleading results.

SCM has multiple meanings in different fields of science and engineering. It is related to the
many-body problem in physics [77], assembly in statistical mechanics [18], molecular dynamics
simulations [2, 43], biological fields and others [79, 29, 24]. We pay particular attention to
self-consistent method in the theory of composites by Maxwell [41, p.365] developed by Hill
[33], Beran [8], Kröner [38] and many others, and its relations to Schwarzs method outlined in
the next sections of this note.

J.C. Maxwell proposed SCM in 1873 [41]. S.G. Mikhlin developed the alternating method
of Schwarz in 1949 [45]. Mikhlin’s result can be considered a mathematical embodiment of
Maxwell’s approach. We are interested in the Maxwell-Garnett approximation derived in 1904
[42] and suitable for the complex dielectric permittivity. It is worth noting that the same formula
for real conductivity (permittivity) was known as the Clausius-Mossotti approximation [62]
published in 1850. It coincides with Maxwell’s approximation [41]. This formula arose in the
works by Lorenz (1869) and Lorentz (1879) in another context2. Perhaps the universality of
mathematical modeling was not clear in the XIX century. The historical notes [40, 46] and
references therein clarify the series of the above formulas.

The main result of the present note consists of applying Schwarz’s method to composites and
deriving new higher-order approximations for the tensor 𝜀𝜀𝜀⊥. In particular, we demonstrate that
Maxwell’s SCM and its modern modifications coincide with the first-order approximation of
Schwarz’s method.

An extensive theoretical review of SCMs for a dispersed composite can be found in [66, 67]
where the term ”grain composite” was used. After these works, many engineers implemented
SCMs and obtained numerical estimations of the effective constants for various composites.
However, the principal theoretical question of the limitations of SCMs was still open. The
argumentation of SCM validity was based on the condition of dilute concentration in [41, 33,
38, 67, 66]. It was noted that applying SCM to non-dilute composites, i.e., to the second-order
terms in 𝑓 , may yield physically unacceptable predictions [17, 22].

The obtained result for a self-consistent approach in a 2D permittivity statement has to be
expected in general consideration, in particular for 2D-3D conductive and elastic composites,
the macroscopic viscosity of suspensions, and so forth [26, 21], due to the universality of
mathematical modeling. Hence, the precision analysis for the 2D permittivity of the present

2James Clerk Maxwell and J.C. Maxwell Garnett are different persons, L. Lorenz and H.A. Lorentz, too.
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book can be extended to general composites and porous media. Analytical formulas for the
effective properties were derived in [26, 21, 58] in the form of power series in the concentration of
inclusions 𝑓 and contrast parameter 𝜚. The series was truncated to polynomials in 𝑓 1/2 and 𝜚 with
the exactly found coefficients symbolically depending on the location and shape of inclusions.
Moreover, the order precision 𝑂 ( |𝜚 |𝑚 𝑓 𝑝/2) of the derived formulas was justified. Here, 𝑚
denotes the number of iterations in Schwarz’s method, and 𝑝 is related to the concentration
approximation used at every iteration.

The literature presents numerous formulas for effective properties, often viewed as perturba-
tions or extensions of lower-order formulas in 𝑓 and 𝜚 to higher-order terms, albeit frequently
without justification. Some of these formulas, although formally distinct, describe composites
under similar deterministic or probabilistic frameworks. For instance, an apparent contradiction
between two different models concerning the effective permittivity of elliptical inclusions was
clarified in [59]. Some researchers overlook inconsistencies in analytical formulas and instead
rely on numerical comparisons of specific datasets.

This raises a fundamental question: why do some formulas applied to the same composite
differ? Typically, the issue stems from confusing terminology, where the term model is incorrectly
used in place of formula. It is crucial not to conflate a model with the resulting formula in exact
sciences. If a mathematically defined problem yields two different answers, it does not imply the
consideration of two distinct models. The correct research approach defines the model as a priori
and conducts the mathematical study as a posteriori, not the reverse. This principle equally applies
to probabilistic problems involving random composites, where the distribution of inclusions must
be explicitly defined within the problem statement. Subsequently, the mathematical expectation
of the effective constants, uniquely determined for a well-described class of random composites,
must be calculated, as demonstrated in [65].

In numerous studies, algorithms simulate random composites incorporating random variables
whose probability distributions are often obscured within machine codes. Furthermore, simu-
lation outcomes can vary depending on the employed protocols [76, 37]. Such differences may
lead to varying results for the effective constants, which correspond naturally to different spatial
distributions of inclusions.

To the end of the above discussion, we have the exact coefficients in our formulas [26, 21] in
𝜚 and 𝑓 . Hence, we can compare formulas from the previous publications with the asymptotic
estimations in order to make conclusions concerning the validity of the formulas called ”models.”
Such a comparison of the Maxwell-Garnett formula (Clausius-Mossotti approximation) for equal
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disks yields the asymptotic formula

(13) 𝜀𝑒 =
1+ 𝜚 𝑓

1− 𝜚 𝑓
+𝑂 ( 𝑓 3),

where the tensor 𝜀𝜀𝜀⊥ takes the form 𝜀𝑒 𝐼, the scalar 𝜀𝑒 denotes the macroscopic permittivity, 𝐼 the
identity matrix. The exact precision up to 𝑂 ( 𝑓 3) was established in [57].

The Hashin-Shtrikman bounds for 2D two-phase macroscopically isotropic composites for
real normalized permittivity of components 𝜀1 and 𝜀 = 1 when 𝜀1 > 1 can be written in the form
[31]

(14) 𝜀−𝐻𝑆 ≤ 𝜀𝑒 ≤ 𝜀+𝐻𝑆,

where

(15) 𝜀−𝐻𝑆 = 1+ 2 𝑓 (𝜀1 −1)
(1− 𝑓 ) (𝜀1 −1) +2

, 𝜀+𝐻𝑆 = 𝜀1 +
2(1− 𝑓 ) (1− 𝜀1)𝜀1
𝑓 (1− 𝜀1) +2𝜀1

.

The bounds (15) in terms of 𝜚 and 𝑓 becomes

(16) 𝜀−𝐻𝑆 =
1+ 𝜚 𝑓

1− 𝜚 𝑓
, 𝜀+𝐻𝑆 =

1+ 𝜚

1− 𝜚

1− 𝜚(1− 𝑓 )
1+ 𝜚(1− 𝑓 ) .

It is worth noting that 𝜀−
𝐻𝑆

coincides with the Maxwell-Garnett approximation (13).
In this note, we show that Schwarz’s method can be implemented in the form of different

iterative schemes known in the theory of composites as the contrast and cluster expansions
[46, 76, 26]. The contrast expansion for 2D permittivity problems leads to a power series in
𝜚. The cluster expansion means a series in 𝑓 1/2. Frequently, the authors of SCMs do not care
about the precision in 𝜚 and 𝑓 1/2, and derive, in the best case, the same formula asymptotically
equivalent to the Maxwell-Garnett formula. The analysis of precision [57, 26, 21, 50, 54]
demonstrate a discrepancy between the rigorously derived formulas for the effective permittivity
of disks/spheres and some formulas obtained by SCM.

It was proved in [50, 54] that an extension of Maxwell’s approach to a finite collection of
inclusions (cluster) may give, at most, the effective properties of dilute clusters. A simple feature
of an expansion of the effective permittivity in 𝑓 was formulated in [57]. Any general formula
for 2D two-phase macroscopically anisotropic dispersed composites which does not include the
location of disks holds up to 𝑂 ( 𝑓 2); for macroscopically isotropic composites up to 𝑂 ( 𝑓 3).
This criterion of lower order formula could be extended to multi-phase composites except at
the Hashin-Shtrikman type assemblages [12, 15] with neutral inclusions. For instance, a set of
valuable formulas for multi-phase macroscopically anisotropic composites [44] is valid up to
𝑂 ( 𝑓 2).
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4. Transmission conditions and R-linear problem for 2D composites

We now proceed to implement Schwarz’s method for boundary value problems of dispersed
2D periodic composites. Consider a multi-phase composite with non-overlapping inclusions
embedded in the 2D matrix. The composite is supposed to be represented by a periodicity cell
𝑄 introduced as follows. The plane coordinates x = (𝑥1, 𝑥2) will be identified with the complex
variable 𝑧 = 𝑥1 + i𝑥2. Let 𝜔𝜔𝜔111 and 𝜔𝜔𝜔222 be the fundamental periods on the complex plane C

(17) 𝜔𝜔𝜔111Im 𝜔𝜔𝜔222 = 1.

Equation (17) means that the area of 𝑄 is normalized to unity. Let the fundamental parallelo-
gram 𝑄

(18) 𝑄 ≡𝑄 (0,0) =

{
𝑧 = 𝑡1𝜔𝜔𝜔111 + 𝑡2𝜔𝜔𝜔222 ∈ C : −1

2
< 𝑡1, 𝑡2 <

1
2

}
.

The points 𝑚1𝜔𝜔𝜔111 +𝑚2𝜔𝜔𝜔222 (𝑚1,𝑚2 ∈ Z) generate a doubly periodic lattice Q For instance, the
square array is generated by two translation vectors expressed by complex numbers

(19) 𝜔𝜔𝜔111 = 1, 𝜔𝜔𝜔222 = i.

Consider 𝑁 non-overlapping simply connected domains 𝐺𝑘 in the unit periodicity cell 𝑄
with piece-wise Lyapunov’s boundaries 𝐿𝑘 and the multiply connected domain 𝐺 = 𝑄\∪𝑁

𝑘=1
(𝐺𝑘 ∪ 𝐿𝑘 ), the complement of all the closures of 𝐺𝑘 to 𝑄 (see Figure 1). Each simple closed
curve 𝐿𝑘 leaves 𝐺𝑘 to the left. Every curve 𝐿𝑘 is smooth except at a finite set of points called
vertices. Following [64], we say that a function belongs to Muskhelishvili’s class 𝐻 if it is Hölder
continuous on all smooth closed arcs of 𝐿𝑘 .

Consider a doubly periodic multi-phase composite when the host 𝐺 +𝑚1𝜔𝜔𝜔111 +𝑚2𝜔𝜔𝜔222 and the
inclusions𝐺𝑘+𝑚1𝜔𝜔𝜔111+𝑚2𝜔𝜔𝜔222 are occupied by dielectric materials. Let the permittivity of the host
is normalized to unity, and the permittivity of 𝑘th inclusion be a complex number 𝜀𝑘 = 𝜀′

𝑘
+ i𝜀′′

𝑘
,

where 𝜀′
𝑘
= Re 𝜀𝑘 and 𝜀′′

𝑘
= Im 𝜀𝑘 . One can consider 𝜀𝑘 as the ratio of the permittivity of the 𝑘th

inclusion to the permittivity of the matrix, where the dimension permittivities can be complex.
One can assume that the constants 𝜀𝑘 take the values from a set M which contains less than 𝑁

elements. Let #M = 𝑀 , i.e., the composite is (𝑀 +1)−phases and 𝜀𝑘 = 𝜀( 𝑗) , if 𝑗 = 1,2, . . . , 𝑀 .
In this case, formulas similar to the formulas (4.2.26)-(4.2.27) from [26] can be derived for a
multi-phase composite by the method developed in [48]. These formulas can be considered as
extensions of formulas [73] to higher order contrast parameters terms.

The external flux E0

Let 𝑢 = 𝑢′+ 𝑖𝑢′′ and 𝑢𝑘 = 𝑢′
𝑘
+ 𝑖𝑢′′

𝑘
denote the potentials in 𝐺 and 𝐺𝑘 , respectively, where for

instance 𝑢′ =Re 𝑢 and 𝑢′′ = Im 𝑢 in𝐺. The complex functions 𝑢 and 𝑢𝑘 satisfy Laplace’s equation
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in the corresponding domains and are continuously differentiable in their closures except at the
vertices 𝑊𝑘 ⊂ 𝐿𝑘 where they belong to Muskhelishvili’s class 𝐻 [64].

The perfect contact between the components is expressed by equations

(20) 𝑢(𝑡) = 𝑢𝑘 (𝑡),
𝜕𝑢

𝜕n
(𝑡) = 𝜀𝑘

𝜕𝑢𝑘

𝜕n
(𝑡), 𝑡 ∈ 𝐿𝑘 (𝑘 = 1,2, . . . , 𝑁),

where the normal derivative 𝜕
𝜕n on 𝐿𝑘 is used. Two complex relations (20) can be written in the

extended real form

𝑢′(𝑡) = 𝑢′𝑘 (𝑡),
𝜕𝑢′

𝜕n
(𝑡) = 𝜀′𝑘

𝜕𝑢′
𝑘

𝜕n
(𝑡) − 𝜀′′𝑘

𝜕𝑢′′
𝑘

𝜕n
(𝑡),

(21)

𝑢′′(𝑡) = 𝑢′′𝑘 (𝑡),
𝜕𝑢′′

𝜕n
(𝑡) = 𝜀′′𝑘

𝜕𝑢′
𝑘

𝜕n
(𝑡) + 𝜀′𝑘

𝜕𝑢′′
𝑘

𝜕n
(𝑡),

𝑡 ∈ 𝐿𝑘 (𝑘 = 1,2, . . . , 𝑁).

Following the homogenization theory [7], we must consider a composite in the plane torus
topology. Hence, such a structure can be considered as a doubly periodic representative unit cell
𝑄; see the MMM principle by Hashin [30] and its constructive application to random composites
in Chapter 3 of [26].

The external field is modeled by two conditions

(22) 𝑢(𝑧+𝜔𝜔𝜔111) −𝑢(𝑧) = 𝜉1, 𝑢(𝑧+𝜔𝜔𝜔222) −𝑢(𝑧) = 𝜉2,

where 𝜉1 and 𝜉2 are two complex vectors that determine the jump of the external field in the
directions 𝜔𝜔𝜔111 and 𝜔𝜔𝜔222, respectively. It follows from the theory of homogenization [7] that the
external potential 𝑢𝑒𝑥𝑡 (𝑧) has to be taken as a linear function in 𝑥1 and 𝑥2. A linear function in
𝑥1 and 𝑥2 can be represented as an R-linear function in the complex variable 𝑧 = 𝑥1 + i𝑥2

(23) 𝑢𝑒𝑥𝑡 (𝑧) = a𝑧+b𝑧,

where a and b are constant vectors.
The theory of homogenization implies that the problem (21)-(22) has to be solved for two

linearly independent vectors 𝜉1 and 𝜉2 in order to completely determine the effective permittivity
tensor. One can consider the normalized external fields parallel to the coordinate axes determined
by the external potential (23) with a = b = ( 1

2 ,0)
⊤ and a = −b = ( 1

2i ,0)
⊤, respectively, where ⊤

denotes the transposition. These fields yield two pairs

(24) 𝜉1 = (𝜔𝜔𝜔111,0)⊤, 𝜉2 = (Re 𝜔𝜔𝜔222,0)⊤ and 𝜉1 = (0,0)⊤, 𝜉2 = (0, Im 𝜔𝜔𝜔222)⊤.

The corresponding calculations can be found in [26, Section 2.2] for the real fields.
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In the present note and most others, we consider the square array with (19) for definiteness.
In this case, the function 𝑢(𝑡) satisfies the normalized jump conditions per unit periodic square
cell 𝑄

(25) 𝑢(𝑧+1) −𝑢(𝑧) = (1,0)⊤, 𝑢(𝑧+ 𝑖) −𝑢(𝑧) = (0,0)⊤.

The conditions (25) mean that the external complex flux E0 = (−1,0) is applied. Here, the
components of E0 are complex numbers. More precisely, for instance, the real part of first
relation (25) are formally written in the same form

(26) Re 𝑢(𝑧+1) −Re 𝑢(𝑧) = (1,0)⊤, Im 𝑢(𝑧+1) − Im 𝑢(𝑧) = (0,0)⊤.

Analogous relations occur for the second problem when E0 = (0,−1).
We now reduce the problem (21) to a vector-matrix R-linear problem. The second column of

(21) suggests to introduce the non-degenerate real matrix

(27) 𝛼𝛼𝛼𝑘 =

(
𝜀′
𝑘

−𝜀′′
𝑘

𝜀′′
𝑘

𝜀′
𝑘

)
.

A similar matrix was introduced in [14] to develop variational principles for the complex effective
tensor.

Introduce the vector complex potentials

(28) 𝜑𝜑𝜑(𝑧) =
(
𝑢′(𝑧) + 𝑖𝑣′(𝑧)
𝑢′′(𝑧) + 𝑖𝑣′′(𝑧)

)
, 𝑧 ∈ 𝐺

and

(29) 𝜑𝜑𝜑𝑘 (𝑧) =
1
2
(𝐼 +𝛼𝛼𝛼𝑘 )

(
𝑢′
𝑘
(𝑧) + 𝑖𝑣′

𝑘
(𝑧)

𝑢′′
𝑘
(𝑧) + 𝑖𝑣′′

𝑘
(𝑧)

)
, 𝑧 ∈ 𝐺𝑘 .

where 𝑣′(𝑧), 𝑣′′(𝑧) and 𝑣′
𝑘
(𝑧), 𝑣′′

𝑘
(𝑧) denote the imaginary parts of the components of the analytic

(meromorphic) vector-functions 𝜑𝜑𝜑(𝑧) and 𝜑𝜑𝜑𝑘 (𝑧), respectively, 𝐼 denotes the identity matrix.
The harmonic and analytic functions are related by the vector relations The complex vector

flux

(30) 𝜓𝜓𝜓(𝑧) =
©­­­«

𝜕𝑢′

𝜕𝑥1
− i 𝜕𝑢′

𝜕𝑥2

𝜕𝑢′′

𝜕𝑥1
− i 𝜕𝑢′′

𝜕𝑥2

ª®®®¬ , 𝑧 ∈ 𝐺,

and

(31) 𝜓𝜓𝜓𝑘 (𝑧) =
1
2
(𝐼 +𝛼𝛼𝛼𝑘 )

©­­­«
𝜕𝑢′

𝑘

𝜕𝑥1
− i 𝜕𝑢

′
𝑘

𝜕𝑥2

𝜕𝑢′′
𝑘

𝜕𝑥1
− i 𝜕𝑢

′′
𝑘

𝜕𝑥2

ª®®®¬ , 𝑧 ∈ 𝐺𝑘 .
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Using the formula

(32) 2 (𝐼 +𝛼𝛼𝛼𝑘 )−1 =
2

|1+ 𝜀𝑘 |2
(
𝐼 +𝛼𝛼𝛼𝑇

𝑘

)
=

2
|1+ 𝜀𝑘 |2

(
1+ 𝜀′

𝑘
𝜀′′
𝑘

−𝜀′′
𝑘

1+ 𝜀′
𝑘

)
,

introduce the contrast matrix parameter

(33) 𝛽𝛽𝛽𝑘 = −(𝐼 −𝛼𝛼𝛼𝑘 ) (𝐼 +𝛼𝛼𝛼𝑘 )−1 =
1

|1+ 𝜀𝑘 |2

(
|𝜀𝑘 |2 −1 −2𝜀′′

𝑘

2𝜀′′
𝑘

|𝜀𝑘 |2 −1

)
.

Then, the conditions (21) can be written in the form of vector-matrix R-linear problem

(34) 𝜑𝜑𝜑(𝑡) = 𝜑𝜑𝜑𝑘 (𝑡) − 𝛽𝛽𝛽𝑘𝜑𝜑𝜑𝑘 (𝑡), 𝑡 ∈ 𝐿𝑘 (𝑘 = 1,2, . . . , 𝑁).

It follows from (25) that the vector-function 𝜑𝜑𝜑(𝑧) satisfies the quasi-periodicity conditions

(35) 𝜑𝜑𝜑(𝑧+1) = 𝜑𝜑𝜑(𝑧) +
(

1+ i𝑑11

i𝑑21

)
, 𝜑𝜑𝜑(𝑧+ 𝑖) = 𝜑𝜑𝜑(𝑧) +

(
i𝑑12

i𝑑22

)
,

where 𝑑𝑖 𝑗 are undetermined real constants that could be found during the solution to the boundary
value problem (34).

The eigenvalues of the matrix 𝛽𝛽𝛽𝑘

(36) 𝜚𝑘 =
𝜀𝑘 −1
𝜀𝑘 +1

, 𝜚𝑘 =
𝜀𝑘 −1
𝜀𝑘 +1

.

The matrix 𝛽𝛽𝛽𝑘 admits the decomposition

(37) 𝛽𝛽𝛽𝑘 = TΛ𝑘T−1,

where

(38) T =

(
i −i
1 1

)
, T−1 =

1
2

(
−i 1
i 1

)
, Λ𝑘 =

(
𝜚𝑘 0
0 𝜚𝑘

)
.

Equation (37) implies that

(39) 𝛽𝛽𝛽𝑘 𝛽𝛽𝛽𝑚 = T

(
𝜚𝑘 𝜚𝑚 0

0 𝜚𝑘 𝜚𝑚

)
T−1.

In the case of real 𝜀𝑘 , the matrix (33) becomes diagonal 𝛽𝛽𝛽𝑘 = 𝜚𝑘 𝐼, and the vector-matrix
R-linear problem (34) can be decomposed onto two the same scalar R-linear problems system-
atically studied in [26]. The contrast expansion method equivalent to Schwarz’s method can
be applied to the vector-matrix problem to determine the local fields. It is suggested that the
convergence will hold for |𝜚𝑘 | ≤ 1.

In the subsequent sections of this note, we assume that permittivity takes real values. Conse-
quently, the vector complex potentials mentioned earlier share two identical coordinates. This



16

enables us to reduce vector-matrix operations to scalar transformations, as elaborated in [26].
We will proceed with our analysis under the assumption of real permittivity, deferring the
exploration of the complex case.

5. Schwarz’s method for dispersed periodic composites with real-valued permittivity

It is noted at the end of the previous section that Schwarz’s method can be applied to the
vector-matrix R-linear problem (34). As a result, the local fields can be found by power series in
the matrices 𝛽𝛽𝛽𝑘 , perhaps truncated, but in symbolic form. Such an expression can be helpful in
the computation of the effective permittivity tensor 𝜀𝜀𝜀⊥. However, we will discover that solving
the scalar R-linear problem is adequate after the application of the general theorem of analytic
continuation to the complex domain of 𝜀𝑘 in formulas for the tensor 𝜀𝜀𝜀⊥ with real 𝜀𝑘 . Therefore,
we can adopt the following strategy. First, we obtain the symbolic form of 𝜀𝜀𝜀⊥ by considering
real 𝜀𝑘 and solving the scalar R-linear problem discussed in this note. This step alone yields
the desired result. Next, we extend the obtained analytical exact and approximate formulas by
formally considering complex values of 𝜀𝑘 . This approach simplifies matrix transformations and
reduces them to more manageable scalar manipulations.

In addition, we will offer a lucid illustration of the methodological limitations of EMA in the
scalar case. This demonstration will be comprehensively presented towards the note’s conclusion,
following our rigorous investigation of Schwarz’s method.

So, hereafter non-overlapping inclusions 𝐺𝑘 of real permittivity 𝜀𝑘 (𝑘 = 1,2, . . . , 𝑁) are
embedded in a periodic square cell𝑄 of unit area. The following equations establish a relationship
between the scalar complex and real potentials.

(40) Re 𝜑(𝑧) = 𝑢(𝑧), 𝑧 ∈ 𝐺, Re 𝜑𝑘 (𝑧) =
𝜀𝑘 +1

2
𝑢𝑘 (𝑧), 𝑧 ∈ 𝐺𝑘 (𝑘 = 1,2, . . . , 𝑁).

The complex potentials 𝜑(𝑧) and 𝜑𝑘 (𝑧) are analytic in 𝐺 and 𝐺𝑘 , respectively, and continuously
differentiable in the closures of the considered domains except at the vertices of 𝐿𝑘 where the
limit values of derivatives 𝜑′(𝑧) and 𝜑′

𝑘
(𝑧) belong to Muskhelishvili’s class 𝐻. The function

𝜑(𝑧) satisfies the quasi-periodicity conditions

(41) 𝜑(𝑧+1) = 𝜑(𝑧) +1, 𝜑(𝑧+ 𝑖) = 𝜑(𝑧) + 𝑖𝑑,

𝑑 is an undetermined real constant that should be found while solving the problem [26, Chapter
3, Section 4.3]. The perfect contact between the components (transmission condition) is written
as the scalar R-linear problem

(42) 𝜑(𝑡) = 𝜑𝑘 (𝑡) − 𝜚𝑘𝜑𝑘 (𝑡), 𝑡 ∈ 𝐿𝑘 (𝑘 = 1,2, . . . , 𝑁).



17

Introduce a space H(𝐺+) in 𝐺+ = ∪𝑛
𝑘=1𝐺𝑘 and Hölder continuous in the closure of 𝐺+

endowed the norm [9]

(43) | |𝜔| | = sup
𝑡∈𝐿

|𝜔(𝑡) | + sup
𝑡1,2∈𝐿

|𝜔(𝑡1) | −𝜔(𝑡2) |
|𝑡1 − 𝑡2 |𝛼

,

where 0 < 𝛼 ≤ 1 and 𝐿 = ∪𝑁
𝑘=1𝐿𝑘 . The space H(𝐺𝑘 ) of functions analytic in a fixed 𝐺𝑘 and

Hölder continuous in 𝐺𝑘 ∪ 𝐿𝑘 can also be considered. The problem (41)-(42) is considered in
the space H(𝐺+) [61].

Let Ĉ=C∪{∞} denote the extended complex plane. Let ℎ(𝑡) be a function Hölder continuous
on 𝐿. Consider the Cauchy-type integral on the complex plane [64]

(44) Φ(𝑧) = 1
2𝜋𝑖

∫
𝐿

ℎ(𝑡)
𝑡 − 𝑧

d𝑡, 𝑧 ∈ Ĉ\𝐿.

Its generalization to a class of doubly periodic functions (on the plane torus) has the form [28]

(45) Φ(𝑧) = 1
2𝜋𝑖

∫
𝐿

ℎ(𝑡)𝐸1(𝑡 − 𝑧) d𝑡, 𝑧 ∈ 𝐺+∪𝐷.

It is defined by the Eisenstein function 𝐸1(𝑧) expressed through the Weierstrass function 𝜁 (𝑧).
The function (45) is double periodic up to constant jumps per the periodicity cell

(46) Φ(𝑧+𝜔𝜔𝜔 𝑗𝑗𝑗 ) −Φ(𝑧) = −
𝛿 𝑗

𝜋𝑖

∫
𝐿

ℎ(𝑡) d𝑡 ( 𝑗 = 1,2).

where 𝛿 𝑗 are constants determined in [1].
Let the domain 𝐺− be the complement of the closure of all the inclusion domains to the

extended complex plane, i.e., 𝐺− = Ĉ\(𝐺+ ∪ 𝐿). If ℎ(𝑧) belongs to H(𝐺+), according to
Chauchy’s formula, we have [23, 64]

(47)
1

2𝜋𝑖

∫
𝐿

ℎ(𝑡)
𝑡 − 𝑧

d𝑡 =

{
ℎ(𝑧), 𝑧 ∈ 𝐺+,

0, 𝑧 ∈ 𝐺−.

If ℎ(𝑧) belongs to H(𝐺−), we have [23, 64]

(48)
1

2𝜋𝑖

∫
𝐿

ℎ(𝑡)
𝑡 − 𝑧

d𝑡 =

{
ℎ(∞), 𝑧 ∈ 𝐺+,

−ℎ(𝑧) + ℎ(∞), 𝑧 ∈ 𝐺−.

The same formulas (47)-(48) hold for the Cauchy’s integral (45) with the other kernel on the
torus topology with 𝐺− = 𝐺.

The limit boundary valuesΦ+(𝑡) = lim𝐺𝑘∋𝑧→𝑡Φ(𝑧) andΦ−(𝑡) = lim𝐷∋𝑧→𝑡Φ(𝑧) of the Cauchy-
type integral (44) satisfy Sochocki’s formulas

(49) Φ+(𝑡) = 1
2
ℎ(𝑡) + 1

2𝜋𝑖

∫
𝐿

ℎ(𝜏)
𝜏− 𝑡

d𝜏, Φ−(𝑡) = −1
2
ℎ(𝑡) + 1

2𝜋𝑖

∫
𝐿

ℎ(𝜏)
𝜏− 𝑡

d𝜏, 𝑡 ∈ 𝐿𝑘 .
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The singular integral 1
2𝜋𝑖

∫
𝐿

ℎ(𝜏)
𝜏−𝑡 d𝜏 from (49) is defined as the principal value integral [23, 64].

The same formulas hold for (45) with the other kernel

(50)
Φ+(𝑡) = 1

2ℎ(𝑡) +
1

2𝜋𝑖

∫
𝐿
ℎ(𝜏)𝐸1(𝜏− 𝑡)d𝜏,

Φ−(𝑡) = −1
2ℎ(𝑡) +

1
2𝜋𝑖

∫
𝐿
ℎ(𝜏)𝐸1(𝜏− 𝑡)d𝜏, 𝑡 ∈ 𝐿𝑘 .

Application of the Cauchy-type integral (45) to (42) yields the following system of integral
equations [26]

(51) 𝜑𝑘 (𝑧) =
𝑁∑︁

𝑚=1

1
2𝜋𝑖

∫
𝐿𝑚

𝜚𝑚𝜑𝑚 (𝑡)𝐸1(𝑡 − 𝑧) d𝑡 + 𝑧+ 𝑐𝑘 , 𝑧 ∈ 𝐺𝑘 (𝑘 = 1,2, . . . , 𝑁),

where 𝑐𝑘 are undetermined constants. Equation (51) can be considered as an explicit form of
the general equation similar to (3)

(52) 𝑢𝑘 =

𝑁∑︁
𝑚=1

𝜚𝑚𝐹𝑚𝑢𝑚 +𝑢0, 𝑧 ∈ 𝐺𝑘 (𝑘 = 1,2, . . . , 𝑁).

This equation expresses the charge (energetic) balance between the field 𝑢𝑘 in the inclusion 𝐺𝑘

from one side and the external field 𝑢0 and the fields 𝐹𝑚𝑢𝑚 induced by the inclusions 𝐺𝑚 from
the other side. Schwarzs method can be considered as an iterative scheme applied to equations
(51) or to (52).

Koiter developed the theory of singular integral equations for doubly periodic problems [36],
see also [16] and historical notes in [28, p.55-58]. The theory of singular integral equations
for doubly periodic problems was further developed by Filshtinsky [28, 53] who used the
Weierstrass function 𝜁 (𝑧) instead of the Eisenstein function 𝐸1(𝑧). It was established in [9, 26]
that the system (51) for |𝜚𝑚 | ≤ 1 with fixed 𝑐𝑘 has a unique solution in H(𝐺+). This solution
can be found by the method of successive approximations converging in H(𝐺+), i.e., uniformly
in ∪𝑁

𝑘=1(𝐺𝑘 ∪ 𝐿𝑘 ).
When the functions 𝜑𝑘 (𝑧) are determined, the complex potential in the domain 𝐺 is calculated

by the formula [26]

(53) 𝜑(𝑧) =
𝑁∑︁

𝑚=1

𝜚𝑘

2𝜋𝑖

∫
𝐿𝑚

𝜑𝑚 (𝑡)𝐸1(𝑡 − 𝑧) d𝑡 + 𝑧+ 𝑐𝑘 , 𝑧 ∈ 𝐺.

Using Sochocki’s formulas (50) one can subtract the limit values of (53) from (51) on 𝐿𝑘 in
order to check the relation 𝜑𝑘 (𝑡) − 𝜑(𝑡) = 𝜚 𝜑𝑘 (𝑡), 𝑡 ∈ 𝐿𝑘 , equivalent to (42).

The normalized effective permittivity tensor in the considered case of real 𝜀𝑘 can be calculated
by the formula (3.2.42) of the book [26]. Two components of the tensor are given in the form
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convenient in the further consideration of complex 𝜀𝑘

(54)
𝜀11 = 1+2Re

∑𝑁
𝑘=1 𝜚𝑘

∫
𝐺𝑘

𝑑𝜑𝑘

𝑑𝑧
(𝜉1 + 𝑖𝜉2) d𝜉1d𝜉2,

𝜀12 = −2Im
∑𝑁

𝑘=1 𝜚𝑘
∫
𝐺𝑘

𝑑𝜑𝑘

𝑑𝑧
(𝜉1 + 𝑖𝜉2) d𝜉1d𝜉2.
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dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen. Annalen der physik,
416(7):636–664, 1935.

[11] R.B. Burckel. Iterating analytic self-maps of discs. The American Mathematical Monthly, 88(6):396–407,
1981.

[12] A. Cherkaev. Optimal three-material wheel assemblage of conducting and elastic composites. International
Journal of Engineering Science, 59:27–39, 2012.

[13] A. Cherkaev. Variational methods for structural optimization, volume 140. Springer Science & Business
Media, 2012.

[14] A. Cherkaev and L. Gibiansky. Variational principles for complex conductivity, viscoelasticity, and similar
problems in media with complex moduli. Journal of Mathematical Physics, 35(1):127–145, 1994.

[15] A. Cherkaev and A.D. Pruss. Effective conductivity of spiral and other radial symmetric assemblages. Me-
chanics of Materials, 65:103–109, 2013.

[16] L.I. Chibrikova. Boundary value problems for a rectangle. Kazan. Gos. Univ. Uchen. Zap., 123(10):15–39,
1963.

[17] R.M. Christensen. A critical evaluation for a class of micro-mechanics models. Journal of the Mechanics and
Physics of Solids, 38(3):379–404, 1990.



20

[18] A.I. Curatolo, O. Kimchi, C.P. Goodrich, and M.P. Brenner. The assembly yield of complex, heterogeneous
structures: a computational toolbox. bioRxiv, pages 2022–06, 2022.

[19] M. Dalla Riva, Massimo Lanza de Cristoforis, and P. Musolino. Singularly Perturbed Boundary Value
Problems. Springer, 2021.

[20] L. Demkowicz. Computing with hp-adaptive finite elements: volume 1 one and two dimensional elliptic and
Maxwell problems. CRC press, 2006.
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